
Squid: Networking Stuff
Adrian Chadd <adrian@squid-cache.org>

mailto:adrian@squid-cache.org
mailto:adrian@squid-cache.org


Disclaimer!

• This is very Squid-2 centric

• Most should be applicable to Squid-3 if the 
network API direction is finally chosen!

• As with the storage talk, the “science” is 
missing - I’ll fill that in when I’ve got access 
to the servers w/ data!



Overview
• Squid’s network core isn’t all that bad

• How it’s used is pretty bad

• Its use of C STDIO routines is shocking

• It’s not suitable for efficient threading in its 
current state

• It’s not suitable for high-performance 
network IO (windows completion IO, for 
example) in its current state



Overview
• Core - just an event loop

• Users register for FD read/write interest

• Comm layer on top of that implements basic 
socket operations

• Squid-2: notably, comm_write() is 
implemented, but all reading is done via 
registration and subsequent read()

• SSL is still a bit of a hack



Performance
• Single-thread performance isn’t all that bad

• Cacheboy - separated out the core 
routines from Squid itself

• Allowed for benchmarking of the 
network comm code

• Results are in line with other network 
applications

• - ie, can reach 1Gbps throughput for 
large transactions; or 10,000 small 
transactions/sec



Performance (ctd)

• Where we fall short:

• per-FD description - lots of little 
memcpy()’s that are -only- used for the 
per-FD statistics

• per-FD IP address string - inet_ntoa() 
uses STDIO functions.. :/

• Lots of memory allocation going on 
which just isn’t needed



Network IO Sizes

• For normal WAN and small object sizes, 
never really reach over a couple kbyte per 
read

• For large/streaming objects - may be a 
different story

• Am lacking data to make an adequate 
judgement on this



Network IO calls

• Are we doing network IO in an efficient 
manner?

• No!

• Not using scatter/gather IO

• Not doing zero-copy IO where possible

• .. and Squid itself does a lot of data 
copying which isn’t needed!



Network IO calls

• Supporting a writev() style API would help 
with writing HTTP requests/replies

• Supporting a readv() style API - not so 
obviously useful at the moment?

• This could be done today with minimal 
changes to the codebase (ie, an addition, not 
a “change”.)



Network IO calls

• A lot of time is spent in kernel-space 
copying network data to/from user-space

• Its less of an issue on current hardware, but 
still there

• Can Squid support it?



Network IO calls

• In short - ‘No’.

• cbdata and the lack of explicit IO 
cancellation in the comm API make it 
difficult

• Comm layer and comm users would 
need to be redesigned to handle 
cancellations and failed cancellations!

• “close handlers” - similar issues!



Network - SSL
• SSL is implemented by some fudging

• FD_READ_METHOD / 
FD_WRITE_METHOD

• Comm layer hides the “SSL” IO event 
notifications somewhat

• Some reads need writes, and vice versa

• Solution: a comm_read() / comm_write() 
only API, hiding the event notifications!



Network - threading

• Current comm code is “heavy”

• lots of per-FD state, lots of state in the 
fd_table[]

• Cleanly threading this will be ugly

• Solutions?



Network - threading

• Windows IOCP style - worker thread pool, 
request callbacks can occur in any thread

• UNIX thread style - multiple IO queues, 
request callbacks occur in callee thread

• Varnish style - blocking IO everywhere; 
spawn threads to handle concurrent IO load

• Multiple processes style (ie, ignore threading 
entirely!)



Network - threading

• I’m leaning to the UNIX thread style used in 
things like libevent, memcached, etc

• Each “app” thread has its own local IO 
thread, like a “squid process” today

• One thread handles incoming requests and 
punts them to other threads

• Other threads handle non-IO work queues



Network - threading
• Figure out what needs to handle 

concurrency and what doesn’t

• Treat the rest of Squid at the moment as 
“one thread”

• Implement a generic inter-thread work 
queue

• submit, retrieve and cancel work

• inter-thread communication



Network - threading
• The “core” is mostly easy to thread

• (ie, everything in Cacheboy that isn’t in 
src/)

• .. except MemPools, which need to be turfed

• cbdata semantics make inter-thread 
communication difficult for existing callbacks

• ie, the “can immediately invalidate at any 
time” makes threading impossible



Network - Windows
• Efficient windows support is going to be 

difficult!

1. Get threading support working

2. Get overlapped IO support working

3. Turn “fd” into an opaque type rather than an 
integer

4. Write some glue to translate between the 
IOCP threading model and the Squid 
threading model!



Questions?


