Squid: Storage Stuff

Adrian Chadd <adrian@squid-cache.org>



mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

Dis

claimer!

—

® A lot of the “science” is sitting on currently-
off servers locked away in a datacentre |
couldn’t access before the talk

® .. as such, please take this with a grain of salt
until the science can be backed up.




Storage: overview

® Two main “types”: UFS, COSS

® UFS breakdown into three 1O types
® ufs
® aufs
e diskd

® COSS breakdown into POSIX AIO and
AUFS




Storage: objects

® Entire object is stored on disk as received
from server-side..

e .. with a little bit of TLV-encoded metadata
prepended

® No separation between reply headers and
reply body - its just “reply data” as far as the
store is concerned




Storage: UFS

One file per object

Semantics: open, create, close, unlink, read,
write

Massive code duplication between UFS,
AUFS and DISKD (thanks to my early Squid

development efforts :/); mostly unwound in
Squid-3




Storage: COSS

® Uses large file / raw device to implement
small object storage

® Objects accumulated in memory buffer,
written out to disk in large chunks

® Obijects “recycled” to the front of the disk
write position if frequently accessed,
implementing an LRU




Storage: shortcomings

No support for sparse objects
No support for updating headers

® Henrik’s storeUpdate rewrites the
whole object out with fresh headers..

Entire index is global and in memory!
|O sizes are all wrong

Lots of extra copying where its not needed




Storage: shortcomings

® Swap meta data log is written using sync disk
operations

® [t wasn’t written sync back in Squid-2.2..

® COSS is fast but still experimental and
lacking in useful things like fast rebuild

® No useful way to distribute objects across
disks “properly”

® .. |0+ years of research into this one
area!




Operating Systems

® Operating Systems implement buffer
caches /VMs completely differently

® Squid’s AUFS tuning was done for Linux-2.2,
Solaris 2.6/2.7

® May not be applicable for Linux-2.6,
FreeBSD, Solaris |0.




Operating Systems (ctd)

Differences in handling disk writes

Linux - seems to want to eat as much as it
can during write() and flush it all out async

FreeBSD/Solaris - write() may block
depending upon filesystem semantics, not
guaranteed to be async even with free buffer

RAM

== any sync write() is potentially FAIL!




Logfile Daemon

® | ogfile Daemon - an example

® Pipe logfile contents through local
socket to external process

® External process does the blocking
writes

® Squid tosses logfile data if buffering

grows beyond a fixed size (default 128 *
64k)




Logfile Daemon (ctd)

® Results are pretty shocking:

® Without logfile daemon: access.log

writing on FreeBSD-6/7 and Linux-2.6
top out at ~ 500 req/sec

® With logfile daemon: access.log writing

exceeds 5000 reqg/sec under specific
conditions

® .. but do the math.




Logfile Daemon (ctd)

® The math:
® 500 reg/sec
® say, 80 char/req
® Thats 40kbytes/sec being written

® ..so obviously we're not filling buffer cache
quickly with our 40kbytes/sec of logs; whats
going on?




Logfile Daemon (ctd)

® Exposes underlying VM / buffer cache /
filesystem operation

® VWe can’t assume that disk writes will be
sync at any point

® We can’t assume OSes buffer things
consistently

® |inux vs FreeBSD raw device caching is
different - important for COSS

® Every screwup == drop in throughput




Disk 1O patterns

This may all change with flash based storage,

St

.. C

isk 1O is done in 4k chunks

Disks generally handle >4k chunks about as
fast as 4k chunks, up to about 64k

(COSS at least reads in the whole object
into memory and then returns 4k memory
blocks as requested)

Read/Write APls must handle >4k ops!




Object Locality

® Obijects are distributed two ways:
® Round-robin
® | east-load

® |0+ years of research shows “normal” web
traffic includes temporal locality

® |e, fetching object generally implies
subsequent fetching of other objects

® Would reduce disk 1O substantially!




Object Locality

Some reports that multiple COSS
directories, more than a few (2! 3?) seem to
not provide further speed improvements

Objects from the same “page” are
distributed across multiple storedirs

Which means all storedirs have to get
involved to fetch one page, instead of -one-
storedir

.. Which is better? more or one storedir?




Object Locality

® More work is needed

® ..ie, to bring Squid up to scratch with
the other caching products out there.

® | uckily, this isn’t new and unexplored
territory - lots of research papers cover this
stuff in quite a bit of detail.

® ..some used Squid!




COSS: where to!?

COSS works great for small objects

It doesn’t intelligently work with the OSVM/
buffer cache at all

® .. which is difficult to do cross-platform
It doesn’t handle rebuilds well
It only stores objects with well-known sizes

® _.a shortcoming in upper layers..




COSS: where to!?

A lot of stuff has been “tacked on” to fix
flaws in the original design

Original design: sync disk operations

Adrian’s work: async disk operations, try to
handle object relocation cases correctly

Steven’s work: fix relocation logic to cut
down on disk write |O and improve
performance




COSS: where to?

® COSS could do with a rewrite

® Per-stripe metadata - improve rebuild times

® Storage API layer changes to allow for:

® copy-free reads/writes, >4k sizes

® store objects that can fit (ie, no
Content-Length, but fully received)




New Storage Reg’s

Lose the global index? Or support disk-only
indexes!

Support partial / sparse disk objects
Separate out reply headers and body

® TJo support header updates properly

® ..and as part of a general code tidyup
Threading/concurrency? Distributed stuff?
“Shared” storage? (Eg NFS/shared FC FSes?)




Potential plan?

..well, a lot of this stuff doesn’t need to live
inside Squid at all.

Think “memcached” but for disk objects

® .. sort of a Google-like GFS!?

Simplifies development/testing; integration
back into Squid may be difficult

It -would- allow for interesting possibilities!

® eg cheap SMP support, shared storage..




Potential plan?

. Given what we know now, design a better
API - not the best AP|, a “better” API

. Implement some simple, naive memory/disk
storage modules

. Model/benchmark separate from Squid

. At this point - we have more of an idea how
to move forward!

* instead of separate, small, incremental
changes..




Questions?




