
Squid: Storage Stuff
Adrian Chadd <adrian@squid-cache.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org


Disclaimer!

• A lot of the “science” is sitting on currently-
off servers locked away in a datacentre I 
couldn’t access before the talk

• .. as such, please take this with a grain of salt 
until the science can be backed up.



Storage: overview

• Two main “types”: UFS, COSS

• UFS breakdown into three IO types

• ufs

• aufs

• diskd

• COSS breakdown into POSIX AIO and 
AUFS



Storage: objects

• Entire object is stored on disk as received 
from server-side..

• .. with a little bit of TLV-encoded metadata 
prepended

• No separation between reply headers and 
reply body - its just “reply data” as far as the 
store is concerned



Storage: UFS

• One file per object

• Semantics: open, create, close, unlink, read, 
write

• Massive code duplication between UFS, 
AUFS and DISKD (thanks to my early Squid 
development efforts :/); mostly unwound in 
Squid-3



Storage: COSS

• Uses large file / raw device to implement 
small object storage

• Objects accumulated in memory buffer, 
written out to disk in large chunks

• Objects “recycled” to the front of the disk 
write position if frequently accessed, 
implementing an LRU



Storage: shortcomings

• No support for sparse objects

• No support for updating headers

• Henrik’s storeUpdate rewrites the 
whole object out with fresh headers..

• Entire index is global and in memory!

• IO sizes are all wrong

• Lots of extra copying where its not needed



Storage: shortcomings
• Swap meta data log is written using sync disk 

operations

• It wasn’t written sync back in Squid-2.2..

• COSS is fast but still experimental and 
lacking in useful things like fast rebuild

• No useful way to distribute objects across 
disks “properly”

• .. 10+ years of research into this one 
area!



Operating Systems

• Operating Systems implement buffer 
caches / VMs completely differently

• Squid’s AUFS tuning was done for Linux-2.2, 
Solaris 2.6/2.7

• May not be applicable for Linux-2.6, 
FreeBSD, Solaris 10.



Operating Systems (ctd)

• Differences in handling disk writes

• Linux - seems to want to eat as much as it 
can during write() and flush it all out async

• FreeBSD/Solaris - write() may block 
depending upon filesystem semantics, not 
guaranteed to be async even with free buffer 
RAM

• == any sync write() is potentially FAIL!



Logfile Daemon

• Logfile Daemon - an example

• Pipe logfile contents through local 
socket to external process

• External process does the blocking 
writes

• Squid tosses logfile data if buffering 
grows beyond a fixed size (default 128 * 
64k)



Logfile Daemon (ctd)

• Results are pretty shocking:

• Without logfile daemon: access.log 
writing on FreeBSD-6/7 and Linux-2.6 
top out at ~ 500 req/sec

• With logfile daemon: access.log writing 
exceeds 5000 req/sec under specific 
conditions

• .. but do the math.



Logfile Daemon (ctd)

• The math:

• 500 req/sec

• say, 80 char/req

• Thats 40kbytes/sec being written

• .. so obviously we’re not filling buffer cache 
quickly with our 40kbytes/sec of logs; whats 
going on?



Logfile Daemon (ctd)
• Exposes underlying VM / buffer cache /

filesystem operation

• We can’t assume that disk writes will be 
sync at any point

• We can’t assume OSes buffer things 
consistently

• Linux vs FreeBSD raw device caching is 
different - important for COSS

• Every screwup == drop in throughput



Disk IO patterns
• This may all change with flash based storage, 

still..

• .. disk IO is done in 4k chunks

• Disks generally handle >4k chunks about as 
fast as 4k chunks, up to about 64k

• (COSS at least reads in the whole object 
into memory and then returns 4k memory 
blocks as requested)

• Read/Write APIs must handle >4k ops!



Object Locality
• Objects are distributed two ways:

• Round-robin

• Least-load

• 10+ years of research shows “normal” web 
traffic includes temporal locality

• Ie, fetching object generally implies 
subsequent fetching of other objects

• Would reduce disk IO substantially!



Object Locality
• Some reports that multiple COSS 

directories, more than a few (2? 3?) seem to 
not provide further speed improvements

• Objects from the same “page” are 
distributed across multiple storedirs

• Which means all storedirs have to get 
involved to fetch one page, instead of -one- 
storedir

• .. which is better? more or one storedir? 



Object Locality

• More work is needed

• .. ie, to bring Squid up to scratch with 
the other caching products out there.

• Luckily, this isn’t new and unexplored 
territory - lots of research papers cover this 
stuff in quite a bit of detail.

• .. some used Squid!



COSS: where to?

• COSS works great for small objects

• It doesn’t intelligently work with the OS VM/
buffer cache at all

• .. which is difficult to do cross-platform

• It doesn’t handle rebuilds well

• It only stores objects with well-known sizes

• .. a shortcoming in upper layers..



COSS: where to?

• A lot of stuff has been “tacked on” to fix 
flaws in the original design

• Original design: sync disk operations

• Adrian’s work: async disk operations, try to 
handle object relocation cases correctly

• Steven’s work: fix relocation logic to cut 
down on disk write IO and improve 
performance



COSS: where to?

• COSS could do with a rewrite

• Per-stripe metadata - improve rebuild times

• Storage API layer changes to allow for:

• copy-free reads/writes, >4k sizes

• store objects that can fit (ie, no 
Content-Length, but fully received)



New Storage Req’s
• Lose the global index? Or support disk-only 

indexes?

• Support partial / sparse disk objects

• Separate out reply headers and body

• To support header updates properly

• .. and as part of a general code tidyup

• Threading/concurrency? Distributed stuff?

• “Shared” storage? (Eg NFS/shared FC FSes?)



Potential plan?
• .. well, a lot of this stuff doesn’t need to live 

inside Squid at all.

• Think “memcached” but for disk objects

• .. sort of a Google-like GFS?

• Simplifies development/testing; integration 
back into Squid may be difficult

• It -would- allow for interesting possibilities!

• eg cheap SMP support, shared storage..



Potential plan?
1. Given what we know now, design a better 

API - not the best API, a “better” API

2. Implement some simple, naive memory/disk 
storage modules

3. Model/benchmark separate from Squid

4. At this point - we have more of an idea how 
to move forward!

• instead of separate, small, incremental 
changes..



Questions?


