\\ TERENA TF-Cache
£ Small project 99-005
dfn /cache Extended Cache Statistics

Seafood - a log file analyser (Deliverable 2, Update 2)

Jens-S. Vockler 23. August 1999

Table of contents

1 Compiling Seafood 2....
1.1 Installing compression libraries. 2
1.2 GNU make, flex and bison 3
1.3 Theactual compilation 4
1.4 Installation. e 4....
2 Configuration OptioNS 6....
2.1 Flagitems e 1.0,
2.2 Interval OpliONS o e 8
2.3 LiStitems. 8....
2.4 External IoOKUD SEIVICESt 9
3 Running Seafood 11. ...
0) o = o 1. ..
3.2 Output: writing the resultS. e e e 12
4 Some qUESHIONS and @NSWeLSttt e e 15
5 Missing things (to do list) 16. ..
5.1 Whatis a HIT, what is a MISS, whatistherest? 16
5.2 MetaTraffic. e 16
5.3 Gapsinthelogfile 17
5.4 Configurability e 17
5.5 LOOKUPD SUPPIrESSION. . oottt e e e 18
5.6 Tablelength. 18
5.7 URL PArSINg . . oo e 18
5.8 MURIPrOCESSING . . . o ot 19
6 Selected Internals. 20. ..
6.1 Parsingan URL e e e e i 20
6.2 Readinglogfiles 21
6.3 TriematCher. 22
6.4 The string implementation. 23
A Deviations from Deliverable D1 e 26
A.1 Deviations from Section 1t 26
A.2 Deviations from SEeCtiON 2 e 26
A.3 Deviations from Section 3 27

The DFN caching project is sponsored by the German Ministry of Education, Science, Research and Technology (BMBF)
through the German Research Network Association (DFN Verein). The Trans-European Research and Education Net-
work Association (TERENA) sponsors the "Extended Cache Statistics" project.

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

1

11

Compiling Seafood

The seafood log file analyser is part of a TERENA sponsored projeletase note that this is

a very early version of the parser. It is known to parse Squid 2.2.STABLE4 access.log files.
Older versions of Squid-2 might be supported, but that was not tested. Those might need
some changes to the configuration file. But | am getting ahead of myself here.

If you are familiar with calamasyou will recognize the output format.

In order to successfully achieve a compilation of the seafood software, you will need either a
g++ 2.8 series, or a native C++ compiler on a Unix platform which understands about
mutable , bool and for-scoped loop variables. Egcs might do the trick, too.

If you don’t have such a compiler, you will need to change some things iMtlefile
see the comments therein. If your system is not one of those mentioned in table 1, you might

system compiler
Solaris 2.6, 7 SUN Workshop Compiler 5.0, g++ 2.8.1
Irix 6.2, 6.5 Irix CC 7.2

Linux 2.2 w/ glibc2 g++2.8.1, g++ 2.95

Table 1: Systems and compilers known to work.

need to change some things in the Makefile, too. AIX isn’'t supported, because our compiler
is too old and doesn’t have all the features mentioned earlier. AlX might work with g++.

Seafood was successfully translated on the systems mentioned above, though with Irix, only
the native compiler will do the trick. The g++ 2.8.1 series should be able to compile the
project on many systems not mentioned above.

Installing compression libraries

The seafood log file processor can read compressed files. Compression is an option you can
turn off during compile time in thdlakefile . Just leave th&DD_FLAGSnacro empty of

those libraries you don'’t have installed, and comment out any material related to your partic-
ular compression library in section 1 of thekefile

Seafood is capable of detecting the number of CPUs currently online, and will use an exter-
nal decompressor in a separate process, if there is more than one CPU available, and if the
input is seekable. The decompressgunzip , bunzip2 and uncompress will be
searched for using the run-tinlRATHenvironment variable, refer to section 5.8 (page 19).
The environment variables will be used from the parent process. Still, using an internal
decompressor is useful for single-CPU machines, and for trying to decompress when reading
from pipes or any other un-seekable source.

1. http://www.cache.dfn.de/DFN-Cache/Development/Seafood/
2. http://calamaris.cord.de/

Compiling Seafood 2

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

111

1.1.2

1.2

libz

Refer to the zlib homepaden where to get your version of libz. Unpack it, follow the
instructions, and install the librafjpbz.a into /usr/local/lib and the header files
zconf.h andzlib.h into/usr/local/include . Some systems will needranlib

call, if you move a library.

If you cannot install intdusr/local , You can use another directory, but you will need to
change th&LIBDIR , ZLIBINC andZLIBLIB macros in théMakefile to reflect the cor-

rect location, e.g. most Linux systems have it installed by default, not needing to have any of
these parameters set.

Set the Makefile paramet&DD_FLAGSwith the GNU make append assignment operator

+= to the valueDUSE_LIBZ . By supplying the flag, the relevant source files are informed

to include the appropriate headers and pieces of source code. If you do not want to use zlib,
comment ouADD_FLAGSand theZLIB* flags.

libbz2

Refer to the bzip2 homepaﬁen where to get your version of bzip2. Unpack it, follow the
instructions, and install the libratibbz2.a into /usr/local/lib and the header file
bzlib.h into /usr/local/include . Some systems will needranlib call, if you
move a library.

If you cannot install intdusr/local , you can use another directory, but you will need to
change thé8ZDIR, BZINC andBZLIB macros in theMakefile to reflect the correct loca-

tion, e.g. most Linux systems have it installed by default, not needing to have any of these
parameters set.

Set the Makefile paramet&DD_FLAGSwith the GNU make append assignment operator
+= to the value-DUSE_LIBBZ2. By supplying the flag, the relevant source files are
informed to include the appropriate headers and pieces of source code. If you do not want to
include bzlib, comment o§DD_FLAGSand theBZ* flags.

GNU make, flex and bison

The source files are checked out read-only to wseckler , sorry for the inconvenience.
If you have RCS installed, you may check it out for modifications on your account.

Since | don't understand the GNU autoconf process, and didn’t have time to dig into that, the
Makefile will try to distinguish between different systems, therefore | need the extended
GNU flavour of make. With a regular make, you are bound to run into problems.

The Makefile contains some comments which are meant to aid you. It is split into three
sections. The initial section contains tries to figure out the System you are using and set the
necessary parameters, like the above mentioned compression libraries. The second section is
made up of rules for different host systems and native compilers. The final section should not
need changes, and basically states the dependencies.

There are some compile time configurable parameters for those systems not mentioned in
table 1 (page 2):

1. http://www.cdrom.com/publ/infozip/zlib/
2. http://lwww.bzip2.org/

Compiling Seafood 3

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

1.3

1.4

You should use theDHAS BOOLdefine, if your compiler known about the data type
bool . If the flag is not set, a work-around will be used.

If your compiler knows about the key wontutable , the -DHAS MUTABLHlag
should be turned on.

If your C library supports the non standard character class predicate macro
isblank() , as the GNU libc does, you should set4bBlAS_ISBLANK flag.

Finally, some systems are notoriously slow when using the character class predicate
macros, because they do a wide character checking and sometimes check back with the
locale. If the-DCTYPE_IS_FAST flag is not set, this kind of performance eating
behavior is avoided. On the other hand, if the test progrthkttype finds that your
system library is sufficiently fast:

$./chkctype /boot/vmlinuz # use any large file
REGULAR: 439916 bytes, 16665 digits, 10171 spaces, 10.791 ms
NEW VER: 439916 bytes, 16665 digits, 10171 spaces, 9.814 ms

even if it is a little slower than the new version, you should safely ¢t
-DCTYPE_IS_FAST flag. That way, the libc macros will be used.

For the parsing of the configuration file, flex and bison are used. The standard Unix variants
lex and yacc might or might not do the job; they were never tested. Past experience showed
that it is just too difficult to accommodate every possible flavour of lex, though I might try in
the future.

The actual compilation

Just say make and watch the compiler fiddle away. With Linux, Solaris and Irix, some opti-
mizations are supplied. Some parts of the code can cause a g++ to break, thus for the
counters.cc module all optimization is turned off explicitly - it won't hurt that particular piece

of code anyway. Other (few) pieces can safely be compiled with maximum optimization.
Some compilers are notorious for breaking code with too high an optimization.

Just a note, if you are using a Linux, BSD, or Solaris x86 on a Pentium Il or above, and a g++
or egcs, the compiler optiormcpu=pentiumpro will really make things still a little
faster.

Expect a few warning from your compiler about unu$e@S_|ID variables or some state-
ments not reached in the configuration parser.

Installation

If you are planning on parsing Squid-2 log files, you won't need much fiddling with sea-
food.conf. Still, please read the comments in seafood.conf, and configure to match your
needs.

There are probably a few things you would like to change, e.g. the location of your nearest

RA whois mirrott. If your access is in an European research network, you might want to try
whois.rvs.uni-hannover.de

1. http://www.irrd.net/

Compiling Seafood 4

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

Install the binary seafood at a place of your convenience. Currently, you need to store the
configuration file seafood.conf into the same directory as the seafood binary. Alternatively,
you can use thef conffile command line option to supply a different location of the

configuration file.

Compiling Seafood

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

2 Configuration options

This section describes the options which can be used is¢héod.conf file. Please

note that the configuration file has to reside in the same directory as the binary, and needs the
same base name. An accurate and up-to-date description of the configuration options can be
found within the comments in the log file.

option arguments defaults
no_ident <bool> false
debug_level <int> [, <int>] 0,0
prefer_datarate <bool> false
peak_interval <int> 3600

daily interval <int> 86400
warn_crash_interval <int> 1800
log_fqdn <bool> true
dns_cache _file <string> "fvar/tmp/dns"
dns_positive_ttl <int> 18144000
dns_negative_ttl <int> 604800
irr_cache_file <string> "Ivaritmp/irr"
irr_server <string> | none "whois.ra.net"
irr_positive_ttl <int> 18144000
irr_negative_ttl <int> 604800
method_list <id list> section 2.3.2
warn_unknown_method <bool> false
hierarchy_list <id list> section 2.3.3
warn_unknown_hierarchy, <bool> false
status_list <id list> section 2.3.4
warn_unknown_status <bool> false
scheme_list <id list> section 2.3.5
warn_unknown_scheme <bool> false
mediatype_list <string list> section 2.3.6
media_subtype <string> <string list> section 2.3.7
domain_list <string list> section 2.3.8
warn_unknown_tld <bool> false

Table 2: Syntax of all currently known configuration options.

Please mind that this is an early release. The amount of configuration options most certainly
will change in the future, the options themselves might change their syntax, too, or get
renamed.

The grammar of the configuration file is (almost) format free and case sensitive. Whitespaces
and empty lines are ignored. Comments are started with athagm, and extend to the end

Configuration options 6

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

2.1

2.1.1

2.1.2

2.1.3

214

of the line. All configuration options have to be terminated with a semicolon - this is more
like Pascal than like C.

Table 2 shows the different options at a glance. ¥heol> type may either take the value

true orfalse . The<int> type should be cleakstring> is a double quoted string
which must not extend over line boundaries. A quote character might be introduced into the
string by prefixing it with a backslash. A backslash must for that reason also be escaped by a
backslash.

An <id list> is a list of unquoted words which may only contain upper case letters and
underscores. No digit are allowed. The lists items may be modified by special token words.
Not all modifiers make sense for all lists. Each list item is separated by comma from the next.
The list itself is enclosed in curly braces.

The<string list> is similar to the id list, though each element is a quoted string, and
none of the item modifiers are allowed.

For all configurable values, reasonable defaults are assumed. Still, the configuration file must
at least be touched into existence.

Flag items

The<bool> type configuration options may either take the value orfalse |, regard-
less of the case it is written in.

no_ident

If you disabled the ident protocol logging in your file - see the "ident_lookup off" option in
your squid.conf - the analyser will be enabled to correctly recognize URLs containing
whitespaces.

prefer_datarate

Display a data rate ihit per second instead of a duration. If you chose the duration, time will
be scaled in milliseconds, seconds, hours, days and siderian years.

log_fgdn

Turn on this option if you wish to log fully qualified domain names for the client side lists. To
do this seafood does a DNS lookup of all client IP addresses. Such an action will increase
latency. If your squid uses théepracatedlog_fqdn option, (almost) no DNS reverse
lookups need to be done for the client side.

warn_unknown_XYZ

The warn options, if turned on, protocol all unknown list item for list XYZ as informational
warning ontostderr . As you can see, the warnings are a kind of debug option when new
status codes, hierarchy tags, HTTP methods, request schemes, or top level domains were
introduced. For the latter two items, the warn option is not too meaningful.

Configuration options 7

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

2.2 Interval options

The<int> type allows for non-negative integer numbers. Hexadecimal, decimal and octal
constants are recognized, if the C prefixing is used. All intervals are specified using seconds.
The look up services intervals are explained in section 2.4 (page 9).

2.2.1 peak_interval

The amount in seconds for which a peak value will be accumulated. The so-called peak data
should really be called performance data.

2.2.2 daily_interval

Currently work-in-progress. This is the amount of time for which data will be accumulated.
After the interval is reached, the accumulated data will be dumped into the data base, and a
new set of counters will be started to gather further information.

2.2.3 warn_crash_interval

The amount in seconds between to consequetive time stamps in the log file when a warning
about a possible cache crash should be displayed. This is in effect a 'silence time’, when the
service, host, or network may have been down, or simply nobody asked your cache. Thus you
need to set it sufficiently large not to be bothered with wrong warnings, but sufficiently low
to detect down times. The actual value depends on your cache and clients.

2.3 List items

2.3.1 Listitem aliasing

Both list types allow aliasing. That is, you can give an alternative name for a previously con-
figured option. The concept is similar to a symbolic link:

<new value> alias <old value>

The new value is the new name. If the list requires quoted items, both values most be set in
double quotes. Aliases can only be used within the same list environment. The old value
referred to must already be defined previously in the list. Modifiers are not permitted with an
alias. The aliased new names are never part of the output. Only the referenced old name is
part of the output.

2.3.2 The method_list

The method list is by default empty, but seafood.conf file contains all methods known to
HTTP/1.1 [RFC 2616], Squid-2 (NONE, ICPQUERY, and PURGE) and those extensions
used by WebDAV. You should use the methods from the supplied configuration file. There are
no maodifiers or aliases used.

2.3.3 The hierarchy_list

The hierarchy list is by default empty. The configuration file should list all possible values for
the hierarchy tag in column 9 of tteecess.log file. Additionally, each item should have
a modifierdirect, peer, parent or noneappended to it.

Some people prefer to counPARENT_HITthe same as BEER_HIT, because there is vir-
tually no difference. You can configure the appropriate list item to suit your needs.

Configuration options 8

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

234

2.3.5

2.3.6

2.3.7

2.3.8

2.4

The status_list

The status list concerns the status tag from column 3 chtlcess.log file. The supplied
configuration file lists the status items known to Squid-2.2. Each item should have exactly
one of the modifierscp, udpor none Additionally, each item considered a HIT should have
the hit modifier attached to it, too.

Please note that not all status tags ending in HIT inmayygoing to the origin server. For the
very reason that your notion of a HIT might be different than mine, HITs are configurable.

The scheme_list

The scheme list is by default empty. The configuration file supplies a string list with reasona-
ble values. You should include tlegror scheme in order to be able to distinguish between
Squid generated errors logged with the scheme nammoe , and other kinds of error like
unknown schemes.

The mediatype_list

The media list of the configuration file contains the media types assigned by the IANA, and
some additional media types seen in local log files. The media type is the part before the dash
in the HTTP content type header. As this value is basically user input (well, the author of web
pages and server side includes), you would see many strange things here. For the reason of
media types being user input without Squid sanity checks, a warning options was not deemed
feasible (yet).

The media_subtype lists

For each media type, you can define the sub types you are interested in. Each media type may
have only one sub type list attached to it. If you use more than one, currently the new list will
overwrite the old list. All sub types not mentioned will be counted as suktygerown> .

The domain_list

The domain list contains all top level domains currently known. Please check that none are
missed. The virtual top level domaimumeric> counts all those URL hosts entered as dot-
ted quad or as big integer number.

The virtual top level domairkempty> represents malformed URLs. Thaunknown>
value will be used for anything not in the list, and also represents malformed URLSs, though
of a different malfunction. The interested user may refer to section section 5.1 (page 16).

External lookup services

Give special attention to the values of the optitots fgdn andirr_server . If you set
the seafood optiotog_fgqdn to true, the clients in the client request tables will be printed
symbolically. While most clients are usually local, this will take just a small amount of time.

The optionirr_server is very bad in time consumption. If you are using AS based
lookups, you should have applied the log_ip_on_direct patch. Otherwise, the destination
address must be looked up before the AS number can be determined. Also, the whois server
might be quite slow. Setting thier_server to the valuenone disables the AS lookup
feature. Refer to section 3.2.8 (page 13) for details on how whois lookups affect seafood.

Configuration options 9

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

241

24.2

243

244

245

dns_cache_file

The cache file will be read into main memory after the configuration file was parsed. It
resides in main memory until seafood terminates regularly. At finalization, the contents of the
cache will be dumped into the given file. Please have enough space available, as the DNS file
can grow quite large when used in conjunction with the the AS lookups.

dns_positive_ttl and dns_negative_ttl

Thedns_positive_ttl option specified number of seconds a positive (successful) DNS
lookup should stay in our local DNS cache before it will be verified. The negative TTL spec-
ifies the amount of time, the cache should not try to re-validate unsuccessful lookups.

irr_server

This is the name of the whois server which is willing to service the requestion. Please note
again that a RA or MERIT compatible daemon must be used. If you want to disable the AS
feature, use the unquoted warone as server name.

irr_cache_file

This is the name of the text file to cache IRR lookups and IRR reverse lookups. Use some-
where inconspicious where you are sure to write and grow.

irr_positive_ttl and irr_negative_ttl

The same as the DNS intervals, though for the IRR lookups.iffhpositive _ttl

option specified number of seconds a positive (successful) whois lookup should stay in our
local IRR cache before it will be verified. The negative TTL specifies the amount of time the
cache should not try to re-validate unsuccessful lookups.

Configuration options 10

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

3

3.1

Running Seafood

Run seafood on one or many of your log files. Each run will summarize all log files poured
into it. Each log files may be plain, gzip compressed or bzip2 compressed, at your option.
Stdin can be used by the special file name dagh (

Again, before running seafood, check your configuration file, and make really sure that you
configured those options you want. Give special attention to section 2.4 (page 9) for a speedy
printing of the results.

A typical run, assuming a Bourne or compatible shell, would look like this:

$./seafood /some/where/access.log > result 2> errors &
$ tail -f errors

Stderr

Onstderr , a bunch of warning messages, informational messages and other material will
show up. The informational messages start out with a Washaracter. All actual warnings
start out with the line number of the offending log file line first.

trying to read "./seafood.conf"

#..10...20...24 .34 .42 ...48 ...53 ...58 ...66 ...72 .77
#...109(18) ...114 ...146(38) ...151 ...206(19) ...211 ...230(12)

..271(12) ...295(5) ...305(7) ...321(5) ...329(3) ...335(2) ...348(6)
...606(250) ...611

done reading "./seafood.conf"

This is the informational part of reading the config file. Whenever a complete statement in
the configuration file was parsed, its line number will be displayed. With list statements, the
number of list members will be put into parenthesis.

65536 lines processed from this file

131072 lines processed from this file
196608 lines processed from this file
200000 lines processed from this file
done processing files, writing results

These informational messages are a kind of progress indicator. They may be interrupted with
actual warning like the following:

7: unknown URL scheme "

which means that on line 7 in the input file, a URL without a scheme was supplied. In this
case it was €&ONNECT some.host:443 , so indeed there was no scheme to the URL.

45643: neither TCP nor UDP, counting as TCP

+ timestamp=933546744, duration=3, client="XXX.XXX.XXX.XXX"
+ status="NONE/400", size=2406, method="GET"

+ url="http:///2.htm"

+ ident="-", hier="NONE/-", mime="-"

The above message is a warning about line 45643. The log line constitutes neither TCP nor
UDP, but will be counted as TCP, compare with section 5.1 (page 16). It is just the informa-
tional warning, that your results may be off, though in this case counting as TCP is correct.

1. You can disable this warning by settimgrn_unknown_status totrue .

Running Seafood 11

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

3.2

3.2.1

3.2.2

3.2.3

After the log file was processed, the output will be generated. Each section for the output has
a respective log associated:

title...
overview...

(-]
peaks...
stats...
DONE!

DONE signals the finish of the output. You might also see some messages regarding the sav-
ing of the DNS and IRR caches.

Do not be disturbed if the seafood seems to sit waiting on one of those mentioned in table 3.

position reason

2lds... Seafood is sorting several tens of thousands of domains. On s|ower
machines this may take a while.

asn... If you configured to use IRR, seafood is querying the IRR. Since
the IRR server may be slow in answering, up to 30 s per request,
this may eat a considerable amount of time. Also, if your destina-
tion is not logged as dotted quad, the destination must be looked up
before its AS number can be determined.

clients... Seafood usually reverse resolves the client IP address into some-
thing symbolic.

Table 3: Reasons for possibly slow output.

Output: writing the results

There are a number of tables writtengtolout after a successful parsing. Due to possible

lookups, the writing may take some time, too. If you are familiar with calarhayisu will
recognize the output format.

Overview

The overview section contains a simple table just displaying the sums of all TCP, all UDP
and SUM traffic, including hit rates.

Status

The status section contains a UDP table, which is sorted by HIT and MISS, and a TCP table,
sorted byhit, missandnone

Hierarchy

The hierarchy first displays an overview of the server side connections with the different hier-
archy tags sorted bdirect, parentand peer Please note that even thougkerincludes
mostly sibling, it for some hierarchy codes also include parents. The tag lines contain a hit
rate, which is nonsense, and serves as validator for your configuration file.

1. http://calamaris.cord.de/

Running Seafood 12

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

The second hierarchy is sorted by the peer or parent contacted, and contains the hierarchy
tags used with that particular peer.

Methods

The hierarchy information is followed by the request method table, sorted by requests. Web-
DAV is part of the configuration file, and will thus be counted. Unknown methods are
counted asunknown> .

Schemes

The URL scheme is part of another table, sorted by requests. Unknown schemes are counted
as<unknown> .

Top level domains

The top level domains as configured are displayed in the following section. The first table is
sorted by requests, the second one by volume. If you want to limit the output, currently you
need to change theain() function inseafood.cc , sorry for this.

2nd level domains

The 2nd level domains are displayed in the following two tables. The first table is sorted by
requests, the second one by volume. Both tables are currently limited to the top twenty. If you
want to limit the output to a different number, or use unlimited output (0), currently you need
to change thenain() function inseafood.cc , sorry for this.

Destination AS

If you configured an IRR server, yodlirect hierarchy destination hosts will be grouped by

the destination autonomous system number (ASN) the server resides in. Two tables, sorted
by requests and sorted by volume, will be displayed. Together with any information from
your NOC, you will be enabled to get an idea how costly a certain part of the traffic is, and
what links are likely to be hit. The virtual entgNOIRR>implies that for the given host, an
origin AS could not be determined.

Both tables are currently limited to the top twenty. If you want to limit the output to a differ-
ent number, or use unlimited output (0), again you need to changedh®) function in
seafood.cc

The AS information will be obtained by opening a persistent connection to the whois server

and piping all requests, one at a time, to the server. The part is not particularly stable yet (e.g.
sudden connection drops), and you might want to disable this feature in your seafood config-
uration file with:

irr_server none;

Waiting for the RA whois server is really slow, up to 30 seconds per request. For instance,
processing a log file took 12 seconds, and waiting for the RA server to answer 705 seconds.
So you really might want to use either a mirror closer to you, or use your own mirror (I do!),

see the instructions at the RA whois setver

1. http://www.irrd.net/

Running Seafood 13

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

The whois mirror server can also be used for Squid, agevhois_server in your
squid.conf , thatiis, if you are using thist_as andsrc_as ACLs.

Important: Please note that the RIPE whois server dogssunderstand the extended RA
syntax. Youmust use a RA or Merit compatible whois server.

3.2.9 Mediatypes

The media types and sub types are a run-time configurable option. Again, two tables, sorted
by requests and sorted by volume, are the output. The tables are sorted primarily by the
media type sums, and secondarily by the sub type accumulation.

3.2.10 Non standard ports

It might be of interest to know which other ports besides 80 were used. In order to reduce the
output volume, the ports are grouped by 1024 ports.

3.2.11 UDP clients by request

The UDP client side table is just sorted by requests. The table displays the UDP traffic and
the part of thehit traffic. The table is currently limited to the top twenty. If you want to limit

the output to a different number, or use unlimited output (0), you need to chang@th@

function inseafood.cc , sorry for this.

3.2.12 TCP clients by request

This is a little awkward table. The contents are sorted by requests of the client, and for each
client, the hit, missand noneamount is shown. The table is currently limited to the top
twenty. If you want to limit the output to a different number, or use unlimited output (0), once
again you need to change thain() function inseafood.cc

3.2.13 Cache performance

The performance data are associated with peaks for historical reasons. For each
peak_interval from the configuration file, all requests during that interval are grouped
and displayed consecutively. The first table deals with requests, the second table with vol-
ume. A third could deal with time.

The first three columns display the UDP sum, the Utiftamount and the relative UDift :

UDP amount. The next three columns do the same for TCP. The final six columns deal with
direct, parentandpeertraffic, and the relative number based on the TCP amount. Please note
that the sum of the last four percentage columns in a line do not yield 100. The missing part
is thenonetraffic, which is not logged (yet).

3.2.14 Statistics

The final table displays some statistics about the analyser, e.g. how much time it spend in the
parser loop and how much time it needed at all. Of interest may be the Ips value in parenthe-
sis which is the lines-per-second amount parsed.

Do not be disturbed that even with empty DNS and IRR cache files, you will get hits on the
DNS and IRR cache. Mind that some tables come in just two different sortings, and thus the
second table will hit the cache with its queries.

Running Seafood 14

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

4 Some questions and answers

1. My seafood complains about opening its DNS cache file, and dies?
Probably a previous run of seafood was somehow Kkilled or interrupted, and left the

cache database(s) in an inconsistent state. Remove the cache database files, and restart
seafood. This was true for the old NDBM version.

2. My seafood seems to run, but | get very many warnings?
The current version was tested and run against log files from a Squid-2.2.STABLEA4,
though 2.1.PATCH2, 2.0.PATCHXx, and 1.NOVM.22 were examined, too. If you are
using a different version, there may be slight changes in what is logged in what manner.
Examine the lines printed as warning, the warnings, and change the configuration file to
include the tags from the Squid version you are using.

Alternatively, an experienced user may look into the Squid source tree. The status tags
are inaccess_log.c and the hierarchy tags jreer_select.c

3. What is a HIT, what is a MISS and what is counted anyway?

Refer to section 5.1 (page 16) and to dtatus_list configuration option in the
configuration file.

4. | think | found a bug?
Please contact the autfor

5. Iam at home, not connected, but | want to run a quick analysis?

Use theN command line option to switch off any lookup.

6. The performance data columns don’t sum up to 100%?

The missing part is from theonetraffic, which is not part of the performance output.

7. 1 have a multi processor machine. Shouldn'’t | pipe the output of my decompressor into
seafood instead of using seafood’s internal decompressor?

For multi processor machines, an external decompression utility is started, thus effec-
tively giving you the same kind of performance as piping the decompressed results into
stdin . If you intend to usestdin , use the reserved file name dashfpor it. On some
systems, you can also use tdev/fd/0 file name, or a named pipe.

1. mailto:voeckler@rvs.uni-hannover.de

Some questions and answers 15

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

5 Missing things (to do list)

This section deals with the shortcomings of version 990809. The differences and deviations
from the TERENA deliverable D1 documents are shown in section A (page 26).

This section deals those shortcomings perceived by the author and the project team. If you
perceive more shortcomings which you deem necessary to document, please contact the

authot.

5.1 What is a HIT, what is a MISS, what is the rest?

Currently, only those items tagged with the tolkghin the configuration file are counted as
hit. There exismissandnonetoken, but those are not used. Instead, the following algorithm
is employed:

if (status is UDP) {
if (status is HIT) {
count as UDP HIT
}else {
/l assume MISS
count as UDP MISS
}
}else {
/I assume TCP, though warn if not
if (status is TCP and HIT) {
countas TCP HIT
} elsif (‘hierarchy is NONE or missing) {
/I assume TCP NONE/ERR
count as TCP NONE/ERR
}else {
/l assume TCP MISS
count as TCP MISS
}
if (hierarchy not NONE) {
count server side stuff
}
}

This kind of HIT counting might not meet all requirements, e.g. of log files from different
vendors. The places marked with C++ comments state a kind of precondition which is
assumed at that particular point. Breaking these preconditions should make the results more
accurate. Any suggestions to an algorithm less prone to count the wrong things at the wrong
place is welcome.

The loop contains a work-around for the old Squid bug of TCPHIT/30[12] with a hierarchy
code of nohone which is set tmone

52 Meta Traffic

Any meta data and inter-cache-communication exchange, provocatively called worthless,
should be displayed separately, in order to give an administrator some kind of figure to see

1. mailto:voeckler@rvs.uni-hannover.de

Missing things (to do list) 16

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

521

5.2.2

5.2.3

5.3

5.4

what percentage traffic was generated just for maintaining a cache mesh. Of course, the traf-
fic is not worthless, and some of the traffic would even be generated without caches.

Squid internal object meta traffic

There is at the moment no separate chart about the amount of meta information generated by
squid as a source of non-cache hits. It is possible to get the amount of ICP inter-cache-com-
munication from the UDP charts, the amount of cache digest traffic fronapipéica-
tion/cache-digest media type and the cache manager data froncéobe_object

scheme.

Not directly visible are other squid generated objects like the FTP icons, or almost anything
else starting out in their URL path with /squid-internal-
(static|dynamic|periodic)/ . It looks feasible to generate a different chart where

all the meta data is put into relation to the total data transferred. The actual instance might
need to be configurable, as different vendors might use different paths.

Peer traffic

The analyser shows what amount of data was transferred from peers, but it does only show
with a short line in the client side table the amount of data requésteeers. The client side

table should be split into regular siblings like dependent caches or browsers, and peers. It is
possible and within the amount of data gathered to make this distinction without having to
parse the log file a second time.

If you are planning to use the analyser on many log files from the same cache mesh simulta-
neously, some traffic will be accounted for multiple times. Splitting the client side traffic into
peers and non-peers helps to focus on the real traffic.

Summary

A summary over the previously mentioned topics should yield some insight on how much
traffic was used just for maintaining the caches. The TCP traffic of hierax@hgmight con-
tain most of this traffic, but it also contains errors.

Gaps in the log file

Currently, the analyser does warn about gaps in the log file, e.g. if a cache was down. It does
not (yet) warn about log files being too small or large in the sense that the log file rotation did
not work. Sometimes, feeding such log files is intentional, but a configurable warning would
not hurt.

Configurability

The configuration file is quite large at the moment, and | will expect it to grow further to
accommaodate for future options. Also, some choices are not really fortunate, would need dif-
ferent constellation etc. For instance, the separate warn option for elements not listed in hier-
archy, status, scheme, method or TLD might be better kept as parameter to the list, e.g.

status_list true { ... };

Talking about configurability, the libz and bz2lib functions should be compile time options in
the Makefile. | know it is easily done, but there were more important things to tend to.

Missing things (to do list) 17

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

5.5

5.6

5.7

Lookup suppression

In some instances, a form of output format is needed which may or may not need DNS
lookups, depending on the input file format of thecess.log file. Currently, it is
assumed that the client lists should show the host name in symbolic, not as dotted quads. If
you configured your Squid with the (not recommended) fqdn option, the log file will
already contain symbolic names, and no reverse lookups on the client address is necessary.

But sometimes, either an admin would like to see the dotted quad address, or would like to
anonymize log output by grouping by netmasks. Both options are not yet implemented. If
then the Squid had the (not recommendied) fqdn option activated, forward lookups

will be necessary.

Basically, four options spring into mind when pondering the perceived problem of printing
client addresses:

1. The client addresses should always be printed in symbolic form, regardless of the form
used by Squid.

2. The client addresses should always be printed in dotted quad form, regardless of the
form used by Squid.

3. Client addresses should be combined by a configurable netmask. Since network sym-
bolic names are rarely configured in the DNS database, this will result in the dotted
quad form.

4. The client address should be printed in the same form Squid uses, so that no lookup
whatever is used.

Similar thoughts apply to the destination address in the AS listing. A recent'gatdtienrik

Nordstrom’$ allow for the direct addresses to have their socket peer address logged. As the
address is logged in dotted quad format, a DNS forward lookup can be avoided.

Table length

The tables for client side accesses, top level domains and second level domains are currently
hard coded inteeafood.cc , and should be run time configurable. Please mind that this is
an early release.

URL parsing

The finite state automaton described in section 6.1 (page 20) has one obvious weakness. It is
unable to correctly determine the scheme, host name or port, if any of those contains URL
escaped characters. For the time being, it is assumed that any of those three items does not
contain escaped characters.

Also, well-known symbolic port names are not really understood. Though [RFC 2396]
claims that port numbers in URLs should be given as digit string, some IANA defined well-
known ports are understood by almost all cache hosts. Fortunately, Squid does not under-
stand about symbolic port names, either, so there is nothing to worry yet.

1. http://hem.passagen.se/hno/squid/squid-2.2.STABLE4.log_ip_on_direct.patch
2. http://hem.passagen.se/hno/squid/

Missing things (to do list) 18

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

5.8 Multiprocessing

Threads are planned for obtaining an even higher throughput on multi processor machines.
Back at the W3C'98 in Manchester, there was a discussion about the amount of granularity
needed. | believe giving the reader a thread of their own will improve compressed input
speeds, for a start. Also, creating disjunct sets of counters and feeding them to a work line
might give some more throughput. Still, using for these parts a work crew might even further
speed up processing.

Anyway, with over 20000 lines per seconds, tendency increasing with more powerful plat-
forms, parsing a days worth of log files is a matter of minutes, and thus multi threading is not
really as urgent as is used to be.

Threads come in handy when parsing compressed log files. Giving the decompressor a thread
of its own should speed up performance on any multi processor machine. Currently, when-
ever a multi CPU machine is detected and more than one CPU is online, seafood tries to start
the decompressor in a separate process. Thus some of the speed of multi processor machines
will be handed to you.

Missing things (to do list) 19

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

6 Selected Internals

This section will deal in a few choice internals.

6.1 Parsing an URL

The URL is a user entered input, and may thus contain grossly malformed input. Figure 1
shows the finite state automaton which extracts the method, host name and port from an
URL. Start state is state 0. The final state 5 is not explicitly shown.

elsels esel

anum/h=s;E(s)

@/E(hs)
elselh

ECS

Figure 1:Finite state automaton for parsing URLSs.

The connotation at the arcs may look a little weird. | apologize for not using standard nota-
tion. The Mealy automaton preforms its actions during the transition to a new state. If the arc
is only labelled with a single character, this character will be eaten without doing anything
with it. Otherwise the action is associated with the mentioned character or character class,
and separated by a slash.

The character clasalnum contains alphanumeric characters. The virtual character class
else contains all characters which are not any other arc leaving the node. The action is
abbreviated, too. The actiemmeans to add the character to the schdmte,add to the host
andp to add to the port. The acti®@{) empties the arguments.

The numbering of the state nodes is arbitrary and was chosen in order to simplify the imple-
mentation of the automaton. The weird arc from state 3 to state 2 was added in order to be
able to parse the host name and port of tunnelled connections, e.g. to be able to parse the fol-
lowing log line:

[...] CONNECT some.host.domain:443 - DIRECT/some.host.domain -

Selected Internals 20

Seafood - a log file analyser (Deliverable 2, Update 2)

Extended Cache Statistics

6.2

Reading log files

Figure 2 shows the class hierarchy of the log file reader. The design is neither good nor beau-
tiful, but it is efficient.

Baselnput

dtor();

bool eoln();

bool eof();

int peek();

int get();

int integer();
double rational();
int get(char*,size_t);
skiptolws();
skiplws();
skipovereoln();

Plaininput

unsigned long lineno;

ctor(fd, size, prefill);
[... abstr. meth. impl. ...
int get(char*,size_t);
skiptolws();

skiplws();

GZiplnput

BZip2Input

Filterinput

ctor(fd, size, prefill);
dtor();

ctor(fd, size, prefill);
dtor();

ctor(fd, size, filter);

dtor();

int peek(); int peek();
int read(...); int read(...);
MyUInt32 crc; int result;
int result; size_t zsize;

char* zbuffer;
z_stream gzip;

char* zbuffer;
bz_stream bzip;

int fds[2];
pid_t pid;

Figure 2: Class hierarchy for log file input.

All access to any input method will be done via a base class pointer. By this concept, arbitrar-
ily compressed or encrypted log files may be added to the analyser. All that is needed is
another class being able to parse the new input. The compression classes are siblings of the
plain text class for efficiency and code reuse reasons. Details can be found in the source files

input.*

Part of the current implementation is the Baselnput hierarchy, shown in figure 2. The abstract
base class defines the outer visible interface. The siblings implement the interface. The prim-
itives shown are sufficient for parsing the squid logs, but as other log formats emerge, the
class most certainly will need extensions. The base class also contains a few implementa-

tions, which all rely on thgeek() andget()

input.

peek()

file (EOF) as -2get()

method. Those are central methods to the

is access to the look-ahead character, and includes the states error as -1 and end-of-
obtains the character with removing it from the buffer. The return

values follow thepeek() semantic. All input buffer handling in sibling classes should be

managed ipeek() . get()

call.

The higher level parsing functioriateger()

, rational()

and get(string)

is more like apeek() call with a subsequent advance cursor

rely

on the lower level functions. The integer functions come in four flavours, able to parse 64 bit
and 32 bit signed and unsigned numbers. Effort was taken to supply an efficient implementa-
tion, copying buffers as the cursor is advanced. No character sequence should needed to be
read twice. Thus, the input performance is often slightly better than standard 10 performance

and a lot better than C++ streams.

Selected Internals

21

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

6.3

ThePlaininput class implements the interface functions. It provides fully buffered input
for the supplied file descriptor. Also, it overwrites almost all base class methods with a more
efficient refinement.

GZiplnput s logically a sibling ofBaselnput , and was planned as brotherR&ain-

Input . Implementation though showed that is was easier to implement as refinement of
GZiplnput , thus using the more efficient implementations and only modifying the
peek() method to work with zipped files. Similar observations are true forRHgp2-

Input class.

TheFilterinput class starts an external program, connects the given file descriptor to the
stdin of the external filter, and connects tis&dout of the external filter to the file
descriptor thePlainlnput parent class reads from. With the help of the filtered input, on
multi processor machines the decompression can be sped up while maintaining the easy to
use command line interface.

The overall performance when using the currently non-threaded internal decompressor on a
symmetric multiprocessing computers is worse, when compared to an external unzip piped
into seafood, or the filtered input prcoessor (which runs in a separate process).

On a single CPU system with a decent scheduler the internal unzip mechanism performs as
good as the externally filtered input. Putting the input classes into threads of their own should
always be considered beneficial, though.

Trie matcher

The central data structure enabling the analyser to its perceived speed istlatzistruc-

ture. A trie is a non-binary tree, where each node contains one letter of the word to be
matched. With each letter, one level in the tree is descended. Common prefixes are thus bun-
dled together, compare the trie in figure 3 which contains the words nag, nave, navy, nose, no,

none, noon and now.

(@]

e y e e n

Figure 3: Trie of the words nag, nave, navy, nose,
no, none, noon and now.

The trie nodes matching a word are shown as squares, non-word nodes are shown as circles.
Please note that a word matching node is not limited to leaf nodes.

1. originally from re-trie-val, but in order to distinguish from a tree, often pronounced as try-ee.

Selected Internals 22

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

When comparing the match function of a trie with a hash table, both (usually) need a time
proportional to the length of the word looked at. But as a trie by then has arrived at the stored
value, a generic hashes usually need to do collision avoidance.

When looking at the matching speed of words not in either container, the trie excels even fur-
ther. As soon as the first letter not in the trie is encountered, the trie will ’know’ a mismatch.
A generic hash table though will need to touch all letters of a mismatch and possibly do some
collision avoidance in order to conclude a mismatch. Worse, if the hashes collision avoidance
is coded unfortunately, each letter of the word will be need to be touched repeatedly for string
comparisons.

The drawback of a trie is the insertion of new elements, which takes considerable more time
than an insertion into a generic hash. Therefore, tries are used for static information which is
read in once from the config file during start-up, and which is just matched against, while
hash maps are used to store dynamic content found during the parsing of the log file. There
are currently four different implementations of a trie, three of which are actually used for the
project:

1. One implementation limits the words matchable to all uppercase letters and an under-
score. The implementation is vector based, and each node can have a maximum of 32
children.

2. There is a similar implementation limiting matchable words to ASCII characters. Since
this seconds implementation also uses a vector, this time of 128 siblings, it is quite
memory intensive, and should only be used for short words and word lists with loads of
common prefixes.

3. Another implementation uses linked lists to be more memory efficient, and with the
knowledge that in the lower level of the trie, often there is only one sibling. Of course,
searching this kind of trie is a little slower.

4. The not used implementation trie to be both, memory efficient, unlimited and fast. It
uses a growable vector approach, and a character table indirection. Unfortunately, it
does not work (yet), and was thus excluded from the project.

6.4 The string implementation

When porting the first Perl prototype to C++, as high level a construct was needed as Perl
supplies to its users. The necessary constructs included associative arrays which could be
symbolically indexed, excessive use of regular expressions called and the basic data types of
a Strings . Still char* pointers and character vectors are kept for performance reasons.
The string classes are primarily used for indexing associative arrays and returning symbolic
information from functions. Figure 3 sketches the interrelation of the different classes having
to do the handling of symbolic information.

All maps are indexed by &tring and may use an arbitrary value class. Only basic C types
need to set the boolean argument to the map, indicating that there is no default constructor
setting the correct start value during vector construction.

The string map only uses tt&tring type as a key, but additionally enforces that its keys
conform to theHashable interface. As the class is abstract, thus shown in italics, a sibling

1. The idiominterfaceis taken from Java, but appropriately describes the classes function.

Selected Internals 23

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

must supply the abstract method, if it does not want to be abstract itselfHableable
interface is common, and thus needs some refinement with regards to strings.

- r - ===
StringMap l—ﬁ size_t hash()

strmap I static size_t hashpjw()
I static size_t hashstl()
L

StringBaseRep

dtor()

const char* content()
size_t length()
size_t references()
size_t increase()
size_t decrease()

/\stri ngrep RegExp

int status
StringRep StringSentinel regex_t _expression
regmatch_t _match[10]

static StringSentinel* instance() regstr

unsigned refcount

T
|
" |
mutable size_t hashcache const char string[1] |
unsigned size static StringSentinel* singleton |
const char* string A : |
| stringrep |
Fostri ngrep ! :
! String
|
|st ring=StringSentinel::instance() ;E‘ — — 1o ctor()

StringRep* string

string

Figure 4:Chart of string class interrelations.

The base clasStringBaseRep is also an abstract interface, but provides a refinement of
Hashable . Of its two sibling classestringRep and StringSentinel , only the
former is used for storing "real" strings. The sole purpose of the sentinel class is to speed up
the default constructor dtring . The special properties of the sentinel are that it always
returns an empty C string as content, has the length OM#&$_INT references, and the
increment and decrement arithmetics have no effect up&tringSentinel is realized

as aSingletondesign pattern. There will be only one instance of the class, and access to it is
granted through thénstance() method. AsString contains a base class pointer to
StringBaseRep , andStringSentinel is a validStringBaseRep , the default con-
structor ofString just stores the address obtained through the singleton. Please mind that
the default constructor is also called for the constructio§tahg arrays, and this is where

the performance gain lies.

ClassStringRep on the other hand goes through a real new and delete calls for constructor
and destructor respective. Any othetring constructor than the default constructor will
really create &tringRep object. The reference counter 8tringRep and the outward
interface provided bystring handle things like copy-construction and assignments in an
efficient manner by doing arithmetic on the reference counter. Working with reference

Selected Internals 24

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

counters createshallow copies. You can create a raddep copyby invoking theclone()
method, but that has not been necessary in this project. It has been dare-said that the refer-
ence counting ability will prove harmful to multi-threading the code!

Talking in design patterns, the relation betwé&ring and the representation hierarchy is

in one way like thebridge pattern The string class defines the outer visible interface,
whereas the representation classes implement string storage. Also, the relation behaves like a
flyweightin another way, because many objects can be shared efficiently.

The association betwe@tring andRegEXxp is very loose. The latter uses the string class

to return certain results like matched sub expressions. The String class uses a regular expres-
sion wrapper to do sed like substitutions. The are no longer necessary in the project, since
regular expressions are extremely slow when compared with trie matches.

Selected Internals 25

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

A

Al

Al1l

A.l2

A.1.3

A.2

A2.1

A.2.2

A221

Deviations from Deliverable D1

Compare with Deliverable D1 for the projécfhe following items were changed, omitted,
or modified as compared with the system analysis presented in the above document.

Deviations from section 1

Intervals

Interval 1|, deals with hourly peaks, and is implemented configurable, see the
peak_interval parameter. Intervalyldeals with all other values which are not peak
related. } is set by the configuration optiataily_interval , but still needs to be imple-
mented, and will be as soon as the analyser uses a cache for its internal counters.

Time output

The time format vs. bandwidth format is a configurable option,meéer_datarate
That way the analyser can also be used by people who are just interested in a speedy log file
processor, but not interested in long term database storage of their results.

Squid 2 based log files

So far, the analyser is known to parse Squid-2.2s4 log files. Some time was spent looking into
2.1p2, 2.0p2, 1.1.22 and 1.1.20 log files. This may not be perfect, yet.

Deviations from section 2

Peak values

The so-called peaks are a kind of performance data. The peaks do not show the miss and
none values for TCP, but show td@ect, parentandpeervalues instead. | believe these are
more feasible.

Domains
The domain list is split into top level domains and 2nd level domains.

Top level domains

The top level domain list is limited by a list of correct domains which is configurable. Still, it
contains over 240 correct top level domains. Two virtual top level domains were introduced.
<numeric> is used for dotted quad destinations and also for single bigint destinations. The
latter are a new feature of the BSD resolver library. Most_XXXX() functions convert
them automagically into a correct internet address.

The virtual top level domairerror> is used for erroneous URLS, in which a host name
could not be found or not be parsed. Also, it will be used for domains not in the top level
domain list.

1. http://www.cache.dfn.de/DFN-Cache/Development/Seafood/deliverablel.pdf

Selected Internals 26

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

A2.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

A.3

A3.1

A.3.2

A.3.3

2nd level domains

It is a problem for the interpretation of data that some top level domains use a small amount
of meaningful 2nd level domains, e.g. "ac.uk" or "com.tw" while others proliferate on the
2nd level domain level.

From practical judgement, e.g. seeing over 27000 distinct 2nd level domains per day and log
file, it seems infeasible to include the 2nd level domain output into any kind of database.
Thus, it is suggested that the analyser may print the 2nd level domains at the admins option,
since they are easily extracted, but due to the amount of data never puts them into any kind of
database.

MIME types

The MIME types, also known as media types and media sub types, are proliferating like the
2nd level domains. For that reason, the media types and media sub types of interest are con-
figurable, and thus limited, to those mentioned in the configuration file. Any media type or
sub type not in the lists is counted<asmknown> .

Request methods

Unknown (not configured) request methods are loggediaknown> and nokerror>

Client side overview

No changes.

Server side overview

The (first) coarse overview of the server side forwarded requests contains a hit count, too.
Usually, one should not see any hits for server side requests. Since the configuration file can
be malconfigured, this is a kind of fail-check. Apart from that, a distinction in HIT, MISS and
NONE/ERR count as the introduction to D1 calls for, is not feasible.

Detailed client side

The UDP traffic meets the requirements. The TCP traffic meets the requirements, too, butis a
little awkward to read (as a text file).

Deviations from section 3
Section 3 of deliverable 1 deals with optional material.

Destination autonomous system

It is implemented, and requires access to a RA or Merit compatible whois server.

Distributions in size and time

Not (yet) implemented, but can be easily done.

pure HITs

The requirement looks as if met implicitly by 2.5, but it is not. Since the analyser can be mis-
configured to count strange lines as hit, a pure hit count would be nice. Still, | do not deem

Selected Internals 27

Seafood - a log file analyser (Deliverable 2, Update 2) Extended Cache Statistics

the effort worthwhile, since correctly implemented analyser does display those hits which
were called pure in D1.

A.3.4 Protocols

The output of the URL schemes is configurable, and part of the analyser. [RFC 2396] is now
the correct literature to cite, not [RFC 1738].

Selected Internals 28

	1 Compiling Seafood
	1.1 Installing compression libraries
	1.1.1 libz
	1.1.2 libbz2

	1.2 GNU make, flex and bison
	1.3 The actual compilation
	1.4 Installation

	2 Configuration options
	2.1 Flag items
	2.1.1 no_ident
	2.1.2 prefer_datarate
	2.1.3 log_fqdn
	2.1.4 warn_unknown_XYZ

	2.2 Interval options
	2.2.1 peak_interval
	2.2.2 daily_interval
	2.2.3 warn_crash_interval

	2.3 List items
	2.3.1 List item aliasing
	2.3.2 The method_list
	2.3.3 The hierarchy_list
	2.3.4 The status_list
	2.3.5 The scheme_list
	2.3.6 The mediatype_list
	2.3.7 The media_subtype lists
	2.3.8 The domain_list

	2.4 External lookup services
	2.4.1 dns_cache_file
	2.4.2 dns_positive_ttl and dns_negative_ttl
	2.4.3 irr_server
	2.4.4 irr_cache_file
	2.4.5 irr_positive_ttl and irr_negative_ttl

	3 Running Seafood
	3.1 Stderr
	3.2 Output: writing the results
	3.2.1 Overview
	3.2.2 Status
	3.2.3 Hierarchy
	3.2.4 Methods
	3.2.5 Schemes
	3.2.6 Top level domains
	3.2.7 2nd level domains
	3.2.8 Destination AS
	3.2.9 Media types
	3.2.10 Non standard ports
	3.2.11 UDP clients by request
	3.2.12 TCP clients by request
	3.2.13 Cache performance
	3.2.14 Statistics

	4 Some questions and answers
	5 Missing things (to do list)
	5.1 What is a HIT, what is a MISS, what is the rest?
	5.2 Meta Traffic
	5.2.1 Squid internal object meta traffic
	5.2.2 Peer traffic
	5.2.3 Summary

	5.3 Gaps in the log file
	5.4 Configurability
	5.5 Lookup suppression
	5.6 Table length
	5.7 URL parsing
	5.8 Multiprocessing

	6 Selected Internals
	6.1 Parsing an URL
	6.2 Reading log files
	6.3 Trie matcher
	6.4 The string implementation

	A Deviations from Deliverable D1
	A.1 Deviations from section 1
	A.1.1 Intervals
	A.1.2 Time output
	A.1.3 Squid 2 based log files

	A.2 Deviations from section 2
	A.2.1 Peak values
	A.2.2 Domains
	A.2.3 MIME types
	A.2.4 Request methods
	A.2.5 Client side overview
	A.2.6 Server side overview
	A.2.7 Detailed client side

	A.3 Deviations from section 3
	A.3.1 Destination autonomous system
	A.3.2 Distributions in size and time
	A.3.3 pure HITs
	A.3.4 Protocols

