
TERENA TF-Cache
Small project 99-005
Extended Cache Statistics

10. August 1999

2

Seafood - a log file analyser (Deliverable 2)

Jens-S. Vöckler
Table of contents
 1 Compiling Seafood . 2

1.1 Installing compression libraries. 2
1.2 GNU make, flex and bison . 3
1.3 NDBM . 4
1.4 The actual compilation . 4
1.5 Installation . 4

 2 Configuration options . 5
2.1 List item aliasing . 6
2.2 The method_list . 6
2.3 The hierarchy_list . 6
2.4 The status_list . 6
2.5 The scheme_list . 7
2.6 The mediatype_list . 7
2.7 The media_subtype lists . 7
2.8 The domain_list . 7

 3 Running Seafood . 8
3.1 Stderr . 8
3.2 Output: writing the results . 9

 4 Some questions and answers . 1
 5 Missing things (to do list) .13

5.1 What is a HIT, what is a MISS, what is the rest? . 13
5.2 Meta Traffic. 13
5.3 Gaps in the log file . 14
5.4 Configurability . 14
5.5 Lookup suppression. 15
5.6 Reading stdin . 15
5.7 Table length . 15
5.8 URL parsing . 15
5.9 Multiprocessing . 16

 6 Selected Internals. 17
6.1 Parsing an URL . 17
6.2 Reading log files . 18
6.3 Trie matcher. 19
6.4 The string implementation. 20

 A Deviations from Deliverable D1 . 23
A.1 Deviations from section 1 . 23
A.2 Deviations from section 2 . 23
A.3 Deviations from section 3 . 24
The DFN caching project is sponsored by the German Ministry of Education, Science, Research and Technology (BMBF)
through the German Research Network Association (DFN Verein). The Trans-European Research and Education Net-
work Association (TERENA) sponsors the "Extended Cache Statistics" project.

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

files.
con-

ither a
bout

might

piler

, only
the

e in
e

e

to
1 Compiling Seafood

The seafood log file analyser is part of a TERENA sponsored project1. Please note that this is
a very early version of the parser. It is known to parse Squid 2.2.STABLE4 access.log
Older versions of Squid, even Squid-2.0.x or Squid-2.1.x, will need some changes in the
figuration file. But I am getting ahead of myself here. Ok, let’s start at the beginning.

If you are familiar with calamaris2, you will recognize the output format.

In order to successfully achieve a compilation of the seafood software, you will need e
g++ 2.8 series, or a native C++ compiler on a Unix platform which understands a
mutable , bool and for-scoped loop variables. Egcs might do the trick, too.

If you don’t have such a compiler, you will need to change some things in theMakefile ,
see the comments therein. If your system is not one of those mentioned in table 1, you

need to change some things in the Makefile, too. AIX isn’t supported, because our com
is too old and doesn’t have all the features mentioned earlier.

Seafood was successfully translated on the systems mentioned above, though with Irix
the native compiler will do the trick. The g++ 2.8.1 series should be able to compile
project on many systems not mentioned above.

1.1 Installing compression libraries

The seafood log file processor can read compressed files, though this isnot recommended on
multi processor machines. Compression is an option you can turn off during compile tim
theMakefile . Just leave theADD_FLAGSmacro empty of those libraries you don’t hav
installed, e.g. comment it out in section 1 of theMakefile .

1.1.1 libz

Refer to the zlib homepage3 on where to get your version of libz. Unpack it, follow th
instructions, and install the librarylibz.a into /usr/local/lib and the header files
zconf.h andzlib.h into /usr/local/include . Some systems will need aranlib
call, if you move a library.

If you cannot install into/usr/local , you can use another directory, but you will need
change theZLIBDIR , ZLIBINC andZLIBLIB macros in theMakefile to reflect the cor-

1. http://www.cache.dfn.de/DFN-Cache/Development/Seafood/
2. http://calamaris.cord.de/

system compiler

Solaris 2.6, 7 SUN Workshop Compiler 5.0, g++ 2.8.1

Irix 6.2, 6.5 Irix CC 7.2

Linux 2.2 w/ glibc2 g++ 2.8.1

Table 1: Systems and compilers known to work.

3. http://www.cdrom.com/pub/infozip/zlib/
Compiling Seafood 2

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ny of

or
ed

e

to

these

or
re

t, the
ded

ree
et the
ction is
ld not

ned in

e

acro

icate
ith the
rect location, e.g. most Linux systems have it installed by default, not needing to have a
these parameters set.

Set the Makefile parameterADD_FLAGSwith the GNU make append assignment operat
+= to the value-DUSE_LIBZ . By supplying the flag, the relevant source files are inform
to include the appropriate headers and pieces of source code.

1.1.2 libbz2

Refer to the bzip2 homepage1 on where to get your version of bzip2. Unpack it, follow th
instructions, and install the librarylibbz2.a into /usr/local/lib and the header file
bzlib.h into /usr/local/include . Some systems will need aranlib call, if you
move a library.

If you cannot install into/usr/local , you can use another directory, but you will need
change theBZDIR, BZINC andBZLIB macros in theMakefile to reflect the correct loca-
tion, e.g. most Linux systems have it installed by default, not needing to have any of
parameters set.

Set the Makefile parameterADD_FLAGSwith the GNU make append assignment operat
+= to the value-DUSE_LIBBZ2 . By supplying the flag, the relevant source files a
informed to include the appropriate headers and pieces of source code.

1.2 GNU make, flex and bison

The source files are checked out read-only to uservoeckler , sorry for the inconvenience.
If you have RCS installed, you may check it out for modifications on your account.

Since I don’t understand the GNU autoconf process, and didn’t have time to dig into tha
Makefile will try to distinguish between different systems, therefore I need the exten
GNU flavour of make. With a regular make, you are bound to run into problems.

The Makefile contains some comments which are meant to aid you. It is split into th
sections. The initial section contains tries to figure out the System you are using and s
necessary parameters, like the above mentioned compression libraries. The second se
made up of rules for different host systems and native compilers. The final section shou
need changes, and basically states the dependencies.

There are some compile time configurable parameters for those systems not mentio
table 1 (page 2):

• You should use the-DHAS_BOOLdefine, if your compiler known about the data typ
bool . If the flag is not set, a work-around will be used.

• If your compiler knows about the key wordmutable , the -DHAS_MUTABLEflag
should be turned on.

• If your C library supports the non standard character class predicate m
isblank() , as the GNU libc does, you should set the-DHAS_ISBLANK flag.

• Finally, some systems are notoriously slow when using the character class pred
macros, because they do a wide character checking and sometimes check back w
locale. If the -DCTYPE_IS_FAST flag is not set, this kind of performance eating
behavior is avoided. On the other hand, if the test programchkctype finds that your

1. http://www.bzip2.org/
Compiling Seafood 3

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

riants
owed
in

.
lation

s-

opti-
or the
ce

tion.

g++

ling
atch

on of

e the
ively,
e

system library is sufficiently fast:

$./chkctype /boot/vmlinuz # use any large file
REGULAR: 439916 bytes, 16665 digits, 10171 spaces, 10.791 ms
NEW VER: 439916 bytes, 16665 digits, 10171 spaces, 9.814 ms

even if it is a little slower than the new version, you should safely setthe
-DCTYPE_IS_FAST flag. That way, the libc macros will be used.

For the parsing of the configuration file, flex and bison are used. The standard Unix va
lex and yacc might or might not do the job; they were never tested. Past experience sh
that it is just too difficult to accommodate every possible flavour of lex, though I might try
the future.

1.3 NDBM

For caching DNS and internet routing registry (IRR)1 replies, a NDBM based cache is used
Also, the output phase of subsequent runs is thus sped up. Linux uses the BSD DB emu
employinglibdb , Solaris and Irix have NDBM built into their respective libc. Other sy
tems might need to add the flag-lndbm to the LOADLIBES macro in theMakefile .

1.4 The actual compilation

Just say make and watch the compiler fiddle away. With Linux, Solaris and Irix, some
mizations are supplied. Some parts of the code can cause a g++ to break, thus f
counters.cc module all optimization is turned off explicitly - it won’t hurt that particular pie
of code anyway. Other (few) pieces can safely be compiled with maximum optimiza
Some compilers are notorious for breaking code with too high an optimization.

Just a note, if you are using a Linux, BSD, or Solaris x86 on a Pentium II or above, and a
or egcs, the compiler option-mcpu=pentiumpro will really make things still a little
faster.

Expect a few warning from your compiler about unusedRCS_ID variables or some state-
ments not reached in the configuration parser.

1.5 Installation

If you are planning on parsing Squid-2.2.STABLE4 log files, you won’t need much fidd
with seafood.conf. Still, please read the comments in seafood.conf, and configure to m
your needs. There are probably a few things you would like to change, e.g. the locati

your nearest RA whois mirror2.

Install the binary seafood at a place of your convenience. Currently, you need to stor
configuration file seafood.conf into the same directory as the seafood binary. Alternat
you can use the-f conffile command line option to supply a different location of th
configuration file.

1. also known as thewhois service.
2. http://www.irrd.net/
Compiling Seafood 4

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ds the
can be

tainly
r get

paces

ore
2 Configuration options
This section describes the options which can be used in theseafood.conf file. Please
note that the configuration file has to reside in the same directory as the binary, and nee
same base name. An accurate and up-to-date description of the configuration options
found within the comments in the log file.

Please mind that this is an early release. The amount of configuration options most cer
will change in the future, the options themselves might change their syntax, too, o
renamed.

The grammar of the configuration file is (almost) format free and case sensitive. Whites
and empty lines are ignored. Comments are started with a hash# sign, and extend to the end
of the line. All configuration options have to be terminated with a semicolon - this is m
like Pascal than like C.

option arguments defaults

no_ident <bool> false

debug_level <int> [, <int>] 0,0

peak_interval <int> 3600

warn_crash_interval <int> 1800

log_fqdn <bool> true

dns_cache_file <string> "/var/tmp/dns"

dns_positive_ttl <int> 18144000

dns_negative_ttl <int> 604800

irr_cache_file <string> "/var/tmp/irr"

irr_server <string> | none "whois.ra.net"

irr_positive_ttl <int> 18144000

irr_negative_ttl <int> 604800

method_list <id list> section 2.2

warn_unknown_method <bool> false

hierarchy_list <id list> section 2.3

warn_unknown_hierarchy <bool> false

status_list <id list> section 2.4

warn_unknown_status <bool> false

scheme_list <id list> section 2.5

warn_unknown_scheme <bool> false

mediatype_list <string list> section 2.6

media_subtype <string> <string list> section 2.7

domain_list <string list> section 2.8

warn_unknown_tld <bool> false

Table 2: Syntax of all currently known configuration options.
Configuration options 5

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

string
back-

and
ords.
next.

nd

must

con-

set in
value
h an
me is

n to
ions
e are

for

actly
e

Table 2 shows the different options at a glance. The<bool> type may either take the value
true or false. The<int> type should be clear.<string> is a double quoted string which
must not extend over line boundaries. A quote character might be introduced into the
by prefixing it with a backslash. A backslash must for that reason also be escaped by a
slash.

An <id list> is a list of unquoted words which may only contain upper case letters
underscores. No digit are allowed. The lists items may be modified by special token w
Not all modifiers make sense for all lists. Each list item is separated by comma from the
The list itself is enclosed in curly braces.

The<string list> is similar to the id list, though each element is a quoted string, a
none of the item modifiers are allowed.

For all configurable values, reasonable defaults are assumed. Still, the configuration file
at least be touched into existence.

2.1 List item aliasing

Both list types allow aliasing. That is, you can give an alternative name for a previously
figured option. The concept is similar to a symbolic link:

<new value> alias <old value>

The new value is the new name. If the list requires quoted items, both values most be
double quotes. Aliases can only be used within the same list environment. The old
referred to must already be defined previously in the list. Modifiers are not permitted wit
alias. The aliased new names are never part of the output. Only the referenced old na
part of the output.

2.2 The method_list

The method list is by default empty, but seafood.conf file contains all methods know
HTTP/1.1 [RFC 2616], Squid-2 (NONE, ICPQUERY, and PURGE) and those extens
used by WebDAV. You should use the methods from the supplied configuration file. Ther
no modifiers or aliases used.

2.3 The hierarchy_list

The hierarchy list is by default empty. The configuration file should list all possible values
the hierarchy tag in column 9 of theaccess.log file. Additionally, each item should have
a modifierdirect, peer, parent, ornone appended to it.

Some people prefer to count aPARENT_HITthe same as aPEER_HIT, because there is vir-
tually no difference. You can configure the appropriate list item to suit your needs.

2.4 The status_list

The status list concerns the status tag from column 3 of theaccess.log file. The supplied
configuration file lists the status items known to Squid-2.2. Each item should have ex
one of the modifierstcp, udpor none. Additionally, each item considered a HIT should hav
thehit modifier attached to it, too.
Configuration options 6

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

le.

ona-
en

and
dash

web
son of
emed

e may
t will

e are
t-

ough
3).
Please note that not all status tags ending in HIT implynot going to the origin server. For the
very reason that your notion of a HIT might be different than mine, HITs are configurab

2.5 The scheme_list

The scheme list is by default empty. The configuration file supplies a string list with reas
ble values. You should include theerror scheme in order to be able to distinguish betwe
Squid generated errors logged with the scheme nameerror , and other kinds of error like
unknown schemes.

2.6 The mediatype_list

The media list of the configuration file contains the media types assigned by the IANA,
some additional media types seen in local log files. The media type is the part before the
in the HTTP content type header. As this value is basically user input (well, the author of
pages and server side includes), you would see many strange things here. For the rea
media types being user input without Squid sanity checks, a warning options was not de
feasible (yet).

2.7 The media_subtype lists

For each media type, you can define the sub types you are interested in. Each media typ
have only one sub type list attached to it. If you use more than one, currently the new lis
overwrite the old list. All sub types not mentioned will be counted as sub type<unknown> .

2.8 The domain_list

The domain list contains all top level domains currently known. Please check that non
missed. The virtual top level domain<numeric> counts all those URL hosts entered as do
ted quad or as big integer number.

The virtual top level domain<empty> represents malformed URLs. The<unknown>
value will be used for anything not in the list, and also represents malformed URLs, th
of a different malfunction. The interested user may refer to section section 5.1 (page 1
Configuration options 7

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

red
n, see

l will

nt in
, the

d with

this

P nor
rma-
rect.

t has
3 Running Seafood
Run seafood on one or many of your log files. Each run will summarize all log files pou
into it. Each log files may be plain, gzip compressed or bzip2 compressed, at your optio
section 5.6 (page 15) on the issue ofstdin .

A typical run would look like this:

$./seafood /some/where/access.log > result 2> errors &
$ tail -f errors

3.1 Stderr

On stderr , a bunch of warning messages, informational messages and other materia
show up. The informational messages start out with a hash# character. All actual warnings
start out with the line number of the offending log file line first.

trying to read "./seafood.conf"
...10 ...20 ...24 ...34 ...42 ...48 ...53 ...58 ...66 ...72 ...77
...109(18) ...114 ...146(38) ...151 ...206(19) ...211 ...230(12)
...271(12) ...295(5) ...305(7) ...321(5) ...329(3) ...335(2) ...348(6)
...606(250) ...611
done reading "./seafood.conf"

This is the informational part of reading the config file. Whenever a complete stateme
the configuration file was parsed, its line number will be displayed. With list statements
number of list members will be put into parenthesis.

65536 lines processed from this file
131072 lines processed from this file
196608 lines processed from this file
200000 lines processed from this file
done processing files, writing results

These informational messages are a kind of progress indicator. They may be interrupte
actual warning like the following:

7: unknown URL scheme ""

which means that on line 7 in the input file, a URL without a scheme was supplied. In
case it was aCONNECT some.host:443 , so indeed there was no scheme to the URL.

45643: neither TCP nor UDP
+ timestamp=933546744, duration=3, client="xxx.xxx.xxx.xxx"
+ status="NONE/400", size=2406, method="GET"
+ url="http:///2.htm"
+ ident="-", hier="NONE/-", mime="-"

The above message is a warning about line 45643. The log line constitutes neither TC
UDP, but will be counted as TCP, compare with section 5.1 (page 13). It is just the info
tional warning, that your results may be off, though in this case counting as TCP is cor

After the log file was processed, the output will be generated. Each section for the outpu
a respective log associated:

title...
overview...
 [...]
peaks...
Running Seafood 8

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

iting

le

DP

table,

hier-

a hit

rarchy

Web-
are
stats...
DONE!

DONE signals the finish of the output. Do not be disturbed if the seafood seems to sit wa
on one of those mentioned in table 3.

3.2 Output: writing the results

There are a number of tables written tostdout after a successful parsing. Due to possib

lookups, the writing may take some time, too. If you are familiar with calamaris1, you will
recognize the output format.

3.2.1 Overview

The overview section contains a simple table just displaying the sums of all TCP, all U
and SUM traffic, including hit rates.

3.2.2 Status

The status section contains a UDP table, which is sorted by HIT and MISS, and a TCP
sorted byhit, miss andnone.

3.2.3 Hierarchy

The hierarchy first displays an overview of the server side connections with the different
archy tags sorted bydirect, parent and peer. Please note that even thoughpeer includes
mostly sibling, it for some hierarchy codes also include parents. The tag lines contain
rate, which is nonsense, and serves as validator for your configuration file.

The second hierarchy is sorted by the peer or parent contacted, and contains the hie
tags used with that particular peer.

3.2.4 Methods

The hierarchy information is followed by the request method table, sorted by requests.
DAV is part of the configuration file, and will thus be counted. Unknown methods
counted as<unknown> .

position reason

2lds... Seafood is sorting several tens of thousands of domains. On slower
machines this may take a while.

ans... If you configured to use IRR, seafood is querying the IRR. Since
the IRR server may be slow in answering, up to 30 s per request,
this may eat a considerable amount of time.

clients... Seafood usually reverse resolves the client IP address into some-
thing symbolic.

Table 3: Reasons for possibly slow output.

1. http://calamaris.cord.de/
Running Seafood 9

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ounted

le is
you

d by
If you
eed

y
sorted
rom
and

er-

rver
t (e.g.
onfig-

nce,
onds.
o!),

orted
y the
3.2.5 Schemes

The URL scheme is part of another table, sorted by requests. Unknown schemes are c
as<unknown> .

3.2.6 Top level domains

The top level domains as configured are displayed in the following section. The first tab
sorted by requests, the second one by volume. If you want to limit the output, currently
need to change themain() function inseafood.cc , sorry for this.

3.2.7 2nd level domains

The 2nd level domains are displayed in the following two tables. The first table is sorte
requests, the second one by volume. Both tables are currently limited to the top twenty.
want to limit the output to a different number, or use unlimited output (0), currently you n
to change themain() function inseafood.cc , sorry for this.

3.2.8 Destination AS

If you configured an IRR server, yourdirect hierarchy destination hosts will be grouped b
the destination autonomous system number (ASN) the server resides in. Two tables,
by requests and sorted by volume, will be displayed. Together with any information f
your NOC, you will be enabled to get an idea how costly a certain part of the traffic is,
what links are likely to be hit. The virtual entry<NOIRR> implies that for the given host, an
origin AS could not be determined.

Both tables are currently limited to the top twenty. If you want to limit the output to a diff
ent number, or use unlimited output (0), again you need to change themain() function in
seafood.cc .

The AS information will be obtained by opening a persistent connection to the whois se
and piping all requests, one at a time, to the server. The part is not particularly stable ye
sudden connection drops), and you might want to disable this feature in your seafood c
uration file with:

irr_server none;

Waiting for the RA whois server is really slow, up to 30 seconds per request. For insta
processing a log file took 12 seconds, and waiting for the RA server to answer 705 sec
So you really might want to use either a mirror closer to you, or use your own mirror (I d

see the instructions at the RA whois server1.

The whois mirror server can also be used for Squid, seeas_whois_server in your
squid.conf , that is, if you are using thedst_as andsrc_as ACLs.

Important: Please note that the RIPE whois server doesnot understand the extended RA
syntax. Youmust use a RA or Merit compatible whois server.

3.2.9 Media types

The media types and sub types are a run-time configurable option. Again, two tables, s
by requests and sorted by volume, are the output. The tables are sorted primarily b
media type sums, and secondarily by the sub type accumulation.

1. http://www.irrd.net/
Running Seafood 10

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

e the

c and
it

each
p

nce

each
ed

h vol-

l with
note
part

in the
nthe-

the
s the
3.2.10 Non standard ports

It might be of interest to know which other ports besides 80 were used. In order to reduc
output volume, the ports are grouped by 1024.

3.2.11 UDP clients by request

The UDP client side table is just sorted by requests. The table displays the UDP traffi
the part of thehit traffic. The table is currently limited to the top twenty. If you want to lim
the output to a different number, or use unlimited output (0), you need to change themain()
function inseafood.cc , sorry for this.

3.2.12 TCP clients by request

This is a little awkward table. The contents are sorted by requests of the client, and for
client, thehit, missand noneamount is shown. The table is currently limited to the to
twenty. If you want to limit the output to a different number, or use unlimited output (0), o
again you need to change themain() function inseafood.cc .

3.2.13 Cache performance

The performance data are associated with peaks for historical reasons. For
peak_interval from the configuration file, all requests during that interval are group
and displayed consecutively. The first table deals with requests, the second table wit
ume. A third could deal with time.

The first three columns display the UDP sum, the UDPhit amount and the relative UDPhit :
UDP amount. The next three columns do the same for TCP. The final six columns dea
direct, parentandpeertraffic, and the relative number based on the TCP amount. Please
that the sum of the last four percentage columns in a line do not yield 100. The missing
is thenone traffic, which is not logged (yet).

3.2.14 Statistics

The final table displays some statistics about the analyser, e.g. how much time it spend
parser loop and how much time it needed at all. Of interest may be the lps value in pare
sis which is the lines-per-second amount parsed.

Do not be disturbed that even with empty DNS and IRR cache files, you will get hits on
DNS and IRR cache. Mind that some tables come in just two different sortings, and thu
second table will hit the cache with its queries.
Running Seafood 11

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

t the
d restart

4. If
what
gura-

tags
4 Some questions and answers
1. My seafood complains about opening its DNS cache file, and dies?

Probably a previous run of seafood was somehow killed or interrupted, and lef
cache database(s) in an inconsistent state. Remove the cache database files, an
seafood.

2. My seafood seems to run, but I get very many warnings?

The current version was tested and run against log files from a Squid-2.2.STABLE
you are using a different version, there may be slight changes in what is logged in
manner. Examine the lines printed as warning, the warnings, and change the confi
tion file to include the tags from the Squid version you are using.

Alternatively, an experienced user may look into the Squid source tree. The status
are inaccess_log.c and the hierarchy tags inpeer_select.c .

3. What is a HIT, what is a MISS and what is counted anyway?

Refer to section 5.1 (page 13) and to thestatus_list configuration option in the
configuration file.

4. I think I found a bug?

Please contact the author1.

5. I am at home, not connected, but I want to run a quick analysis?

Use the-N command line option to switch off any lookup.

6. The performance data columns don’t sum up to 100%?

The missing part is from thenone traffic, which is not part of the performance output.

1. mailto:voeckler@rvs.uni-hannover.de
Some questions and answers 12

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

tions

If you
ct the

s
hm

nt
h is
more
rong

chy

less,
o see
5 Missing things (to do list)
This section deals with the shortcomings of version 990809. The differences and devia
from the TERENA deliverable D1 documents are shown in section A (page 23).

This section deals those shortcomings perceived by the author and the project team.
perceive more shortcomings which you deem necessary to document, please conta

author1.

5.1 What is a HIT, what is a MISS, what is the rest?

Currently, only those items tagged with the tokenhit in the configuration file are counted a
hit. There existmissandnonetoken, but those are not used. Instead, the following algorit
is employed:

if (status is UDP) {
 if (status is HIT) {
 count as UDP HIT
 } else {
 // assume MISS
 count as UDP MISS
 }
} else {
 // assume TCP, though warn if not
 if (status is TCP and HIT) {
 count as TCP HIT
 } elsif (hierarchy is NONE or missing) {
 // assume TCP NONE/ERR
 count as TCP NONE/ERR
 } else {
 // assume TCP MISS
 count as TCP MISS
 }
 if (hierarchy not NONE) {
 count server side stuff
 }
}

This kind of HIT counting might not meet all requirements, e.g. of log files from differe
vendors. The places marked with C++ comments state a kind of precondition whic
assumed at that particular point. Breaking these preconditions should make the results
accurate. Any suggestions to an algorithm less prone to count the wrong things at the w
place is welcome.

The loop contains a work-around for the old Squid bug of TCPHIT/30[12] with a hierar
code of notnone, which is set tonone.

5.2 Meta Traffic

Any meta data and inter-cache-communication exchange, provocatively called worth
should be displayed separately, in order to give an administrator some kind of figure t

1. mailto:voeckler@rvs.uni-hannover.de
Missing things (to do list) 13

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

e traf-

ted by
-com-

thing

re
might

show

s. It is
g to

ulta-
into

uch

t does
n did
ould

r to
d dif-
hier-
.

s in
what percentage traffic was generated just for maintaining a cache mesh. Of course, th
fic is not worthless, and some of the traffic would even be generated without caches.

5.2.1 Squid internal object meta traffic

There is at the moment no separate chart about the amount of meta information genera
squid as a source of non-cache hits. It is possible to get the amount of ICP inter-cache
munication from the UDP charts, the amount of cache digest traffic from theapplica-
tion/cache-digest media type and the cache manager data from thecache_object
scheme.

Not directly visible are other squid generated objects like the FTP icons, or almost any
else starting out in their URL path with /squid-internal-
(static|dynamic|periodic)/ . It looks feasible to generate a different chart whe
all the meta data is put into relation to the total data transferred. The actual instance
need to be configurable, as different vendors might use different paths.

5.2.2 Peer traffic

The analyser shows what amount of data was transferred from peers, but it does only
with a short line in the client side table the amount of data requestedby peers. The client side
table should be split into regular siblings like dependent caches or browsers, and peer
possible and within the amount of data gathered to make this distinction without havin
parse the log file a second time.

If you are planning to use the analyser on many log files from the same cache mesh sim
neously, some traffic will be accounted for multiple times. Splitting the client side traffic
peers and non-peers helps to focus on the real traffic.

5.2.3 Summary

A summary over the previously mentioned topics should yield some insight on how m
traffic was used just for maintaining the caches. The TCP traffic of hierarchynonemight con-
tain most of this traffic, but it also contains errors.

5.3 Gaps in the log file

Currently, the analyser does warn about gaps in the log file, e.g. if a cache was down. I
not (yet) warn about log files being too small or large in the sense that the log file rotatio
not work. Sometimes, feeding such log files is intentional, but a configurable warning w
not hurt.

5.4 Configurability

The configuration file is quite large at the moment, and I will expect it to grow furthe
accommodate for future options. Also, some choices are not really fortunate, would nee
ferent constellation etc. For instance, the separate warn option for elements not listed in
archy, status, scheme, method or TLD might be better kept as parameter to the list, e.g

status_list true { ... };

Talking about configurability, the libz and bz2lib functions should be compile time option
the Makefile. I know it is easily done, but there were more important things to tend to.
Missing things (to do list) 14

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

DNS

ads. If

ssary.

ike to
d. If

ting

form

of the

sym-
tted

okup

s the

nd pipe
ame,

rrently
s is

ss. It is
URL
5.5 Lookup suppression

In some instances, a form of output format is needed which may or may not need
lookups, depending on the input file format of theaccess.log file. Currently, it is
assumed that the client lists should show the host name in symbolic, not as dotted qu
you configured your Squid with the (not recommended)log_fqdn option, the log file will
already contain symbolic names, and no reverse lookups on the client address is nece

But sometimes, either an admin would like to see the dotted quad address, or would l
anonymize log output by grouping by netmasks. Both options are not yet implemente
then the Squid had the (not recommended)log_fqdn option activated, forward lookups
will be necessary.

Basically, four options spring into mind when pondering the perceived problem of prin
client addresses:

1. The client addresses should always be printed in symbolic form, regardless of the
used by Squid.

2. The client addresses should always be printed in dotted quad form, regardless
form used by Squid.

3. Client addresses should be combined by a configurable netmask. Since network
bolic names are rarely configured in the DNS database, this will result in the do
quad form.

4. The client address should be printed in the same form Squid uses, so that no lo
whatever is used.

Similar thoughts apply to the destination address in the AS listing. A recent patch1 by Henrik

Nordström’s2 allow for the direct addresses to have their socket peer address logged. A
address is logged in dotted quad format, a DNS forward lookup can be avoided.

5.6 Reading stdin

For multi processor machines, it is recommended to use a separate decompression a
the output into the analyser. Unfortunately, it does not (yet) support the dash - file n
meaningstdin . On some systems, you can fool it either by using the/dev/fd/0 file
name, or using a named pipe.

5.7 Table length

The tables for client side accesses, top level domains and second level domains are cu
hard coded intoseafood.cc , and should be run time configurable. Please mind that thi
an early release.

5.8 URL parsing

The finite state automaton described in section 6.1 (page 17) has one obvious weakne
unable to correctly determine the scheme, host name or port, if any of those contains

1. http://hem.passagen.se/hno/squid/squid-2.2.STABLE4.log_ip_on_direct.patch
2. http://hem.passagen.se/hno/squid/
Missing things (to do list) 15

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

oes not

96]
ell-
nder-

hines.
larity
nput
k line
rther

plat-
s not

thread
escaped characters. For the time being, it is assumed that any of those three items d
contain escaped characters.

Also, well-known symbolic port names are not really understood. Though [RFC 23
claims that port numbers in URLs should be given as digit string, some IANA defined w
known ports are understood by almost all cache hosts. Fortunately, Squid does not u
stand about symbolic port names, either, so there is nothing to worry yet.

5.9 Multiprocessing

Threads are planned for obtaining an even higher throughput on multi processor mac
Back at the W3C’98 in Manchester, there was a discussion about the amount of granu
needed. I believe giving the reader a thread of their own will improve compressed i
speeds, for a start. Also, creating disjunct sets of counters and feeding them to a wor
might give some more throughput. Still, using for these parts a work crew might even fu
speed up processing.

Anyway, with over 20000 lines per seconds, tendency increasing with more powerful
forms, parsing a days worth of log files is a matter of minutes, and thus multi threading i
really as urgent as is used to be.

Threads come in handy when parsing compressed log files. Giving the decompressor a
of its own should speed up performance on any multi processor machine.
Missing things (to do list) 16

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ure 1
m an

ota-
e arc
hing
class,

lass
on is

ple-
to be

the fol-
6 Selected Internals
This section will deal in a few choice internals.

6.1 Parsing an URL

The URL is a user entered input, and may thus contain grossly malformed input. Fig
shows the finite state automaton which extracts the method, host name and port fro
URL. Start state is state 0. The final state 5 is not explicitly shown.

The connotation at the arcs may look a little weird. I apologize for not using standard n
tion. The Mealy automaton preforms its actions during the transition to a new state. If th
is only labelled with a single character, this character will be eaten without doing anyt
with it. Otherwise the action is associated with the mentioned character or character
and separated by a slash.

The character classalnum contains alphanumeric characters. The virtual character c
else contains all characters which are not any other arc leaving the node. The acti
abbreviated, too. The actions means to add the character to the scheme,h to add to the host
andp to add to the port. The actionE() empties the arguments.

The numbering of the state nodes is arbitrary and was chosen in order to simplify the im
mentation of the automaton. The weird arc from state 3 to state 2 was added in order
able to parse the host name and port of tunnelled connections, e.g. to be able to parse
lowing log line:

[...] CONNECT some.host.domain:443 - DIRECT/some.host.domain -

4

30

1

2
:

/

/

:/
#
?

EOS

/
#
?
EOS

else/s

alnum/h=s;E(s)

else/p

@/E(hs)
else/h

@/E(hs)

/
#
?
EOS

else

else

Figure 1:Finite state automaton for parsing URLs.
Selected Internals 17

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

itrar-
ed is
of the

e files

stract
prim-
, the
enta-
e

nd-of-
rn

be
r

4 bit
enta-
d to be
ance
6.2 Reading log files

Figure 2 shows the class hierarchy of the log file reader.

All access to any input method will be done via a base class pointer. By this concept, arb
ily compressed or encrypted log files may be added to the analyser. All that is need
another class being able to parse the new input. The compression classes are siblings
plain text class for efficiency and code reuse reasons. Details can be found in the sourc
input.* .

Part of the current implementation is the BaseInput hierarchy, shown in figure 2. The ab
base class defines the outer visible interface. The siblings implement the interface. The
itives shown are sufficient for parsing the squid logs, but as other log formats emerge
class most certainly will need extensions. The base class also contains a few implem
tions, which all rely on thepeek() andget() method. Those are central methods to th
input.

peek() is access to the look-ahead character, and includes the states error as -1 and e
file (EOF) as -2.get() obtains the character with removing it from the buffer. The retu
values follow thepeek() semantic. All input buffer handling in sibling classes should
managed inpeek() . get() is more like apeek() call with a subsequent advance curso
call.

The higher level parsing functionsinteger() , rational() andget(string) rely
on the lower level functions. The integer functions come in four flavours, able to parse 6
and 32 bit signed and unsigned numbers. Effort was taken to supply an efficient implem
tion, copying buffers as the cursor is advanced. No character sequence should neede
read twice. Thus, the input performance is often slightly better than standard IO perform
and a lot better than C++ streams.

ctor(fd, size);
dtor();
int peek();

gzFile zipfile;

GZipInput

ctor(fd, size);
dtor();
int peek();

BZFILE zipfile;

BZip2Input

PlainInput

ctor(fd, size);
[... abstr. meth. impl. ...]
int get(char*,size_t);
skiptolws();
skiplws();
...

BaseInput

dtor();
bool eoln();
bool eof();
int peek();
int get();
int integer();
double rational();
int get(char*,size_t);
skiptolws();
skiplws();
skipovereoln();

unsigned long lineno;

Figure 2:Class hierarchy for log file input.
Selected Internals 18

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ut
more

nt of
the

r on a
piped
anism
utting

o be
s bun-
e, no,

circles.

time
tored

n fur-
tch.
some
ance
ThePlainInput class implements the interface functions. It provides fully buffered inp
for the supplied file descriptor. Also, it overwrites almost all base class methods with a
efficient refinement.

GZipInput is logically a sibling ofBaseInput , and was planned as brother toPlain-
Input . Implementation though showed that is was easier to implement as refineme
GZipInput , thus using the more efficient implementations and only modifying
peek() method to work with zipped files. Similar observations are true for theBZip2-
Input class.

The overall performance when using the currently non-threaded internal decompresso
symmetric multiprocessing computers is worse, when compared to an external unzip
into seafood. On a single CPU system with a decent scheduler the internal unzip mech
might lead to less contending context switches, and might thus improve performance. P
the input classes into threads of their own should always be considered beneficial.

6.3 Trie matcher

The central data structure enabling the analyser to its perceived speed is the trie1 data struc-
ture. A trie is a non-binary tree, where each node contains one letter of the word t
matched. With each letter, one level in the tree is descended. Common prefixes are thu
dled together, compare the trie in figure 3 which contains the words nag, nave, navy, nos
none, noon and now.

The trie nodes matching a word are shown as squares, non-word nodes are shown as
Please note that a word matching node is not limited to leaf nodes.

When comparing the match function of a trie with a hash table, both (usually) need a
proportional to the length of the word looked at. But as a trie by then has arrived at the s
value, a generic hashes usually need to do collision avoidance.

When looking at the matching speed of words not in either container, the trie excels eve
ther. As soon as the first letter not in the trie is encountered, the trie will ’know’ a misma
A generic hash table though will need to touch all letters of a mismatch and possibly do
collision avoidance in order to conclude a mismatch. Worse, if the hashes collision avoid

1. originally from re-trie-val, but in order to distinguish from a tree, often pronounced as try-ee.

o

n

a

g v

e y e e n

s n o w

Figure 3:Trie of the words nag, nave, navy, nose,
no, none, noon and now.
Selected Internals 19

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

tring

time
ich is
hile

There
r the

nder-
of 32

ince
uite
s of

the
rse,

t. It
ely, it

Perl
uld be
pes of
ons.
bolic
ving

es
ructor

ys

ng

t of

ed up
ys
is coded unfortunately, each letter of the word will be need to be touched repeatedly for s
comparisons.

The drawback of a trie is the insertion of new elements, which takes considerable more
than an insertion into a generic hash. Therefore, tries are used for static information wh
read in once from the config file during start-up, and which is just matched against, w
hash maps are used to store dynamic content found during the parsing of the log file.
are currently four different implementations of a trie, three of which are actually used fo
project:

1. One implementation limits the words matchable to all uppercase letters and an u
score. The implementation is vector based, and each node can have a maximum
children.

2. There is a similar implementation limiting matchable words to ASCII characters. S
this seconds implementation also uses a vector, this time of 128 siblings, it is q
memory intensive, and should only be used for short words and word lists with load
common prefixes.

3. Another implementation uses linked lists to be more memory efficient, and with
knowledge that in the lower level of the trie, often there is only one sibling. Of cou
searching this kind of trie is a little slower.

4. The not used implementation trie to be both, memory efficient, unlimited and fas
uses a growable vector approach, and a character table indirection. Unfortunat
does not work (yet), and was thus excluded from the project.

6.4 The string implementation

When porting the first Perl prototype to C++, as high level a construct was needed as
supplies to its users. The necessary constructs included associative arrays which co
symbolically indexed, excessive use of regular expressions called and the basic data ty
a Strings . Still char* pointers and character vectors are kept for performance reas
The string classes are primarily used for indexing associative arrays and returning sym
information from functions. Figure 3 sketches the interrelation of the different classes ha
to do the handling of symbolic information.

All maps are indexed by aString and may use an arbitrary value class. Only basic C typ
need to set the boolean argument to the map, indicating that there is no default const
setting the correct start value during vector construction.

The string map only uses theString type as a key, but additionally enforces that its ke

conform to theHashable interface1. As the class is abstract, thus shown in italics, a sibli
must supply the abstract method, if it does not want to be abstract itself. TheHashable
interface is common, and thus needs some refinement with regards to strings.

The base classStringBaseRep is also an abstract interface, but provides a refinemen
Hashable . Of its two sibling classesStringRep and StringSentinel , only the
former is used for storing "real" strings. The sole purpose of the sentinel class is to spe
the default constructor ofString . The special properties of the sentinel are that it alwa
returns an empty C string as content, has the length 0, hasMAX_INT references, and the
increment and decrement arithmetics have no effect upon it.StringSentinel is realized

1. The idiominterface is taken from Java, but appropriately describes the classes function.
Selected Internals 20

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

it is
o

that

uctor
ll

an
nce
as aSingletondesign pattern. There will be only one instance of the class, and access to
granted through theinstance() method. AsString contains a base class pointer t
StringBaseRep , andStringSentinel is a validStringBaseRep , the default con-
structor ofString just stores the address obtained through the singleton. Please mind
the default constructor is also called for the construction ofString arrays, and this is where
the performance gain lies.

ClassStringRep on the other hand goes through a real new and delete calls for constr
and destructor respective. Any otherString constructor than the default constructor wi
really create aStringRep object. The reference counter inStringRep and the outward
interface provided byString handle things like copy-construction and assignments in
efficient manner by doing arithmetic on the reference counter. Working with refere
counters createsshallow copies. You can create a realdeep copyby invoking theclone()

Hashable

size_t hash()
static size_t hashpjw()
static size_t hashstl()

hash

StringBaseRep

dtor()
const char* content()
size_t length()
size_t references()
size_t increase()
size_t decrease()

stringrep

StringRep StringSentinel

unsigned refcount
mutable size_t hashcache
unsigned size
const char* string

...

stringrep

stringrep
String

...
static StringSentinel* instance()

ctor()
...

StringRep* string

string

RegExp

...

int status
regex_t _expression
regmatch_t _match[10]

regstr

StringMap

strmap

const char string[1]
static StringSentinel* singleton

string=StringSentinel::instance();

Figure 4:Chart of string class interrelations.
Selected Internals 21

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

refer-

s
e,
s like a

ss
xpres-
since
method, but that has not been necessary in this project. It has been dare-said that the
ence counting ability will prove harmful to multi-threading the code!

Talking in design patterns, the relation betweenString and the representation hierarchy i
in one way like thebridge pattern. The string class defines the outer visible interfac
whereas the representation classes implement string storage. Also, the relation behave
flyweight in another way, because many objects can be shared efficiently.

The association betweenString andRegExp is very loose. The latter uses the string cla
to return certain results like matched sub expressions. The String class uses a regular e
sion wrapper to do sed like substitutions. The are no longer necessary in the project,
regular expressions are extremely slow when compared with trie matches.
Selected Internals 22

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

/

the
k
he for

base.
done

lyser
.

ent to

ss and
e

l, it
ced.
The

e
evel
A Deviations from Deliverable D1

Compare with Deliverable D1 for the project1. The following items were changed/omitted
modified as compared with the system analysis presented in the above document.

A.1 Deviations from section 1

A.1.1 Intervals

Interval I1 deals with hourly peaks, and is implemented configurable, see
peak_interval parameter. Interval I2 deals with all other values which are not pea
related. I2 needs yet to be implemented, and will be as soon as the analyser uses a cac
its counters.

A.1.2 Time output

So far, the analyser prints a bandwidth output. That is not a feasible output for the data
D1 explicitly states that a time should be used, as the calculations of bandwidth are
using the database interface.

The time format vs. bandwidth format and should be a configurable option, so the ana
can also be used by people who are not interested in long term storage of their results

A.1.3 Squid 2 based log files

So far, the analyser is known to parse Squid-2.2s4 log files. Effort and time must be sp
parse elder versions of Squid-2 log files.

A.2 Deviations from section 2

A.2.1 Peak values

The so-called peaks are a kind of performance data. The peaks do not show the mi
none values for TCP, but show thedirect, parentandpeervalues instead. I believe these ar
more feasible.

A.2.2 Domains

The domain list is split into top level domains and 2nd level domains.

A.2.2.1 Top level domains

The top level domain list is limited by a list of correct domains which is configurable. Stil
contains over 240 correct top level domains. Two virtual top level domains were introdu
<numeric> is used for dotted quad destinations and also for single bigint destinations.
latter are a new feature of the BSD resolver library. Mostinet_XXXX() functions convert
them automagically into a correct internet address.

The virtual top level domain<error> is used for erroneous URLs, in which a host nam
could not be found or not be parsed. Also, it will be used for domains not in the top l
domain list.

1. http://www.cache.dfn.de/DFN-Cache/Development/Seafood/deliverable1.pdf
Selected Internals 23

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

ount
the

d log
ase.
ption,
ind of

e the
re con-
e or

t, too.
le can
nd

ut is a

mis-
eem
A.2.2.2 2nd level domains

It is a problem for the interpretation of data that some top level domains use a small am
of meaningful 2nd level domains, e.g. "ac.uk" or "com.tw" while others proliferate on
2nd level domain level.

From practical judgement, e.g. seeing over 27000 distinct 2nd level domains per day an
file, it seems infeasible to include the 2nd level domain output into any kind of datab
Thus, it is suggested that the analyser may print the 2nd level domains at the admins o
since they are easily extracted, but due to the amount of data never puts them into any k
database.

A.2.3 MIME types

The MIME types, also known as media types and media sub types, are proliferating lik
2nd level domains. For that reason, the media types and media sub types of interest a
figurable, and thus limited, to those mentioned in the configuration file. Any media typ
sub type not in the lists is counted as<unknown> .

A.2.4 Request methods

Unknown (not configured) request methods are logged as<unknown> and not<error> .

A.2.5 Client side overview

No changes.

A.2.6 Server side overview

The (first) coarse overview of the server side forwarded requests contains a hit coun
Usually, one should not see any hits for server side requests. Since the configuration fi
be malconfigured, this is a kind of fail-check. Apart from that, a distinction in HIT, MISS a
NONE/ERR count as the introduction to D1 calls for, is not feasible.

A.2.7 Detailed client side

The UDP traffic meets the requirements. The TCP traffic meets the requirements, too, b
little awkward to read (as a text file).

A.3 Deviations from section 3

Section 3 of deliverable 1 deals with optional material.

A.3.1 Destination autonomous system

It is implemented, and requires access to a RA or Merit compatible whois server.

A.3.2 Distributions in size and time

Not (yet) implemented, but can be easily done.

A.3.3 pure HITs

The requirement looks as if met implicitly by 2.5, but it is not. Since the analyser can be
configured to count strange lines as hit, a pure hit count would be nice. Still, I do not d
Selected Internals 24

Seafood - a log file analyser (Deliverable 2) Extended Cache Statistics

hich

now
the effort worthwhile, since correctly implemented analyser does display those hits w
were called pure in D1.

A.3.4 Protocols

The output of the URL schemes is configurable, and part of the analyser. [RFC 2396] is
the correct literature to cite, not [RFC 1738].
Selected Internals 25

	1 Compiling Seafood
	1.1 Installing compression libraries
	1.1.1 libz
	1.1.2 libbz2

	1.2 GNU make, flex and bison
	1.3 NDBM
	1.4 The actual compilation
	1.5 Installation

	2 Configuration options
	2.1 List item aliasing
	2.2 The method_list
	2.3 The hierarchy_list
	2.4 The status_list
	2.5 The scheme_list
	2.6 The mediatype_list
	2.7 The media_subtype lists
	2.8 The domain_list

	3 Running Seafood
	3.1 Stderr
	3.2 Output: writing the results
	3.2.1 Overview
	3.2.2 Status
	3.2.3 Hierarchy
	3.2.4 Methods
	3.2.5 Schemes
	3.2.6 Top level domains
	3.2.7 2nd level domains
	3.2.8 Destination AS
	3.2.9 Media types
	3.2.10 Non standard ports
	3.2.11 UDP clients by request
	3.2.12 TCP clients by request
	3.2.13 Cache performance
	3.2.14 Statistics

	4 Some questions and answers
	5 Missing things (to do list)
	5.1 What is a HIT, what is a MISS, what is the rest?
	5.2 Meta Traffic
	5.2.1 Squid internal object meta traffic
	5.2.2 Peer traffic
	5.2.3 Summary

	5.3 Gaps in the log file
	5.4 Configurability
	5.5 Lookup suppression
	5.6 Reading stdin
	5.7 Table length
	5.8 URL parsing
	5.9 Multiprocessing

	6 Selected Internals
	6.1 Parsing an URL
	6.2 Reading log files
	6.3 Trie matcher
	6.4 The string implementation

	A Deviations from Deliverable D1
	A.1 Deviations from section 1
	A.1.1 Intervals
	A.1.2 Time output
	A.1.3 Squid 2 based log files

	A.2 Deviations from section 2
	A.2.1 Peak values
	A.2.2 Domains
	A.2.3 MIME types
	A.2.4 Request methods
	A.2.5 Client side overview
	A.2.6 Server side overview
	A.2.7 Detailed client side

	A.3 Deviations from section 3
	A.3.1 Destination autonomous system
	A.3.2 Distributions in size and time
	A.3.3 pure HITs
	A.3.4 Protocols

